
DVI2SVG: Using the LATEX Layout on the Web

Adrian Frischauf
Paul Libbrecht
German Research Center for Artificial Intelligence
Stuhlsatzenhausweg 3
66123 Saarbrücken
Germany
adrianf@activemath.org

http://www.activemath.org/~adrianf

Abstract

The problem of presenting mathematical formulas on the Web is non-trivial.
Current systems offer only partial answers to such requirements as the guaranteed
layout on the client side or the availability of font-glyphs. We describe DVI2SVG
a system to convert TEX’s output into Scalable Vector Graphics. This approach
responds to the requirement above and several others. We also present how it has
been put to use into ActiveMath, a learning environment on the Web which
presents mathematical documents personalized to each learner.

1 Different Approaches to Support
Mathematics on the Web

Classically, learning content is presented on the Web
using the HTML format. This format, however, is
unable to provide rich graphical constructs that are
needed to render normal mathematical expressions.
HTML’s layout capabilities are limited, preventing
to fully render such constructs as the square-root or
a fraction with proper baseline alignment. Math-
ematical formulas also often use characters which
may be unavailable on some operating systems while
HTML offers no method to ensure that a given font-
glyph will be available.

Using images for formulas solves these two is-
sues but introduces several other problems. The re-
sulting formula, has no way to align properly inside
a line of text, is not scalable and does not adapt to
the text size if it is changed. Moreover the separate
parts of the formula can not be addressed as dif-
ferent objects by interactive scripts running on the
client.

Presentation MathML [3] has the potential to
realize a full featured mathematical presentation but
browser support has several drawbacks. As with
HTML, the fonts glyphs have to be available to dis-
play the special characters correctly.

Another possibility for the delivery of mathe-
matical content over the Web would be to use PDF
documents. There is no problem with fonts or lay-
out but the PDF document does not allow much
interactivity. As an E-Paper it is an offline resource
and not an online presentation format.

The approach that has taken lead us to imple-
ment DVI2SVG has thus tried to answer the fol-
lowing requirements:
• provide a layout quality as high as the one of

LATEX, for text, formulas, and mixes of them
• deliver the content with guarantees availability

of font-glyphs when presented to the client
• present the content on a platform which can be

dynamically scripted
Moreover, we wished to integrate such a solution in
the ActiveMath learning environment which com-
bines and caches individual paragraphs before being
personalized and delivered to the clients.

The specification of clients for the Scalable Vec-
tor Graphics provides an answer to all these require-
ments and was thus chosen.

2 The Scalable Vector Graphics

The SVG file format [4] is an XML [1] language to
describe two dimensional vector graphics. It was is-
sued as recommendation by the W3C in 2003. This
format allows for easy editing by hand as well as easy
generation because of the many libraries to manip-
ulate XML. SVG allows font-glyphs to be embed-
ded within the document presented, supports and
specifies document object model access through a
scripting API. Because of its graphical nature, the
SVG format is able to display a complete layout
faithfully even though it is unable to compute the
layout itself. We thus put to use the classical qual-
ity of layout of LATEX to create a document rendered
using the modern SVG specification.

Preprint: Proceedings of the 2060 Annual Meeting September 6, 2006 10:37 1001

Adrian Frischauf Paul Libbrecht

3 DVI2SVG

DVI2SVG is a converter for DVI files, the format
output by TEX and LATEX. It is written in Java and
processes streams of DVI tokens. It parses the DVI
input file and generates events, each event represents
a command of the input file and holds the current
state of the page (position, font etc...). The Writer
interpretes the commands and produces the vector
graphics XML.

The DVI format in contrast to SVG is a doc-
ument format with multiple pages. For each page
of the input, DVI2SVG produces a separate SVG
file. Each of these pages contains a header with
the font-definitions for this specific page. Since the
fonts tend to be large, only the font glyphs used in
the page are actually included. With fonts used for
the formulas partial glyph embedding saves a large
space since typically, only one or two characters of
each is used in a page.

DVI2SVG makes use of the classical TEX-fonts
as translated to SVG by Michel Goossens [5] whose
script converts entire fonts into their SVG glyph
equivalent.

The TEX character encoding is used within this
conversion. This poses a problem since the TEX
fonts contain character codes which are invalid in
XML document. The ’’ (the Sigma charac-
ter Σ) is an example of such. The solution used
there is to map the TEX character codes to the Uni-
code private area above 0xE000. No special charac-
ters which break the document occur. The resulting
SVG source document is not human readable and
is also unusable for Web-robots. This issue is only
temporary and implementations such as the Hermes
translator1 show that it is possible to extract good
Unicode text out of the DVI output.

As a command-line tool DVI2SVG can be used
to process static DVI and publish scientific docu-
ments in SVG on the Web.

3.1 Support for Classical LATEX Packages

In addition to the basic DVI commands, DVI2SVG
also supports additional features. LATEXpackages
like color, hyperref or graphicx use special com-
mands to enrich document. They are also translated
to SVG.

Issuing a command in TEX like \special{abc}
is simply copied as ascii text into the DVI file as a
special event. DVI2SVG defines a custom language
it is able to interpret. Since SVG is an XML format,
the language of the specials is closely relatet to that.
Such a special command in the DVI file will look like

1 Hermes is a translator from LATEX to
XHTML+MathML, see http://hermes.roua.org/.

svg: rect @x=0 @y=0 @width=10 @height=10 /rect

This will be transformed into an XML fragment
in the following manner
<rect x="0" y="0" width="10" height="10"/>

It is, thus, possible for an author with little
knowledge of SVG to enrich the document with the
graphics and interactivity that the SVG format sup-
ports.

Using this protocol, a driver for the color and
graphicx packages has been designed in DVI2SVG.
Compiling LATEX documents to DVI using it, pic-
tures, text in colors, as well as rotated texts, can
be embedded using the same macros as that used,
for example, for PDF documents. The supported
image file formats include SVG, GIF, JPEG and
PNG.

The creation of links with the hyperref package
is also supported. Since DVI2SVG produces one file
per input page, in document links will be translated
into links to the SVG file for the corresponding page.

4 Integration with ActiveMath

ActiveMath is a Web-based intelligent learning
environment [8]. It presents mathematical docu-
ments transformed from OMDoc [6] which is an
XML language to semantically represent mathemat-
ical documents. The mathematical formulas in OM-
Doc are encoded in OpenMath [2].

The presentation engine of ActiveMath[10]
has been designed to support the dynamic gener-
ation of content presentation from OMDoc frag-
ments such as definitions or examples. It gener-
ates documents in different output formats such as
HTML, XHTML + MathML, SVG, or PDF.

It first extracts the OMDoc fragments, pro-
cesses it to inject related objects, and applies an
XSLT transformation: this is done exactly once per
fragment and per language and is cached. Once
queries from learners arrive, this cached result is in-
terpreted to inject personalization parameters:
• special mathematical notations are chosen from

depending on the context and user
• fragments are presented in an order that may

be particular to the learner (the learner can edit
his own books, and have it created by a course
generator [9])

• exercise links have to be generated with user-
information

• traces of the learner-model are output within
the presentation which helps the learner’s mo-
tivation and tracking of his progress.
The resulting SVG fragments are assembled us-

ing stream combination and the high-performance

1002 September 6, 2006 10:37 Preprint: Proceedings of the 2060 Annual Meeting

http://hermes.roua.org/

DVI2SVG: Using the LATEX Layout on the Web

template engine Velocity.2 This architecture real-
izes an effective simultaneous delivery to classrooms
of learners.

The resulting presentation is enriched with in-
teractivity: for example, at time of fragment ex-
traction, each mathematical symbol used semanti-
cally in the OMDoc-source is annotated with its
title. The XSLT transformation outputs the nec-
essary \special commands so that scripting code
on the client brings up a tooltip-like layer above
the presented symbol. Potentially, other interactive
features made possible by the semantic nature of
the source could be provided, for example the for-
mula sub-term highlight, context-menu, and drag-
and-drop as presented in [7].

4.1 Example Conversion

We present the processing steps into SVG and see
where caching is possible and where personalization
happens. In the first step, the sources are fetched
from the database. Such a source might look like:
<definition for="SVG">

<metadata>

<Title>

Definition of SVG

</Title>

</metadata>

<CMP xml:lang="en">

SVG stands for Scalable Vector Graphics

and is a Web graphics format.

<OMOBJ>

<OMA>

<OMS name="divide"/>

<OMI value="1"/>

<OMA>

<OMS name="sqrt"/>

<OMI value="2"/>

</OMA>

</OMA>

</OMOBJ>

</CMP>

</definition>

Then, using XSLT, this source is transformed
into the following LATEX fragments:
...

\begin{fragment}

\section*{Definition of SVG}

SVG stands for Scalable Vector Graphics

and is a Web graphics format.

$\frac{1}{\sqrt{2}}$

\end{fragment}

..

Such a fragment is translated to SVG as fol-
lows. For readability, the private Unicode-rang text
parts were replaced by their ASCII representative.

2 See http://jakarta.apache.org/velocity/

In this SVG document one can see the fine control
over the horizontal positionning of each glyph, one
of the major ingredients of LATEX’s layout’s quality.

<rect x="0" y="0" width="468" height="690"

stroke="none" fill="none" />

<g>

<text font-family="CMBX" font-size="16.97">

<tspan y="99.30" x="61.69 76.32 85.02

95.63 106.24 111.54 118.96 124.26 133.81

150.77 160.31 172.51 183.11 197"

>Definition of SVG</tspan>

</text>

<text font-family="CMR" font-size="11.78">

<tspan y="125.20" x="61.69 68.1 76.43

89.32 93.88 98.36 104.13 110.54 116.95

125.34 128.87 134.64 142.97 149.38

154.50 160.27 163.48 169.25 175.65

178.86 187.83 195.52 200.65 205.77

210.26 216.03 224.36 233.41 237.90

243.66 250.07 256.48 259.69 264.81

273.21 278.98 285.39 295.64 298.85

307.24 316.86 327.75 332.87 343.13

348.90 353.38 359.15 365.56 371.97

375.17 380.30 388.70 392.22

397.99 402.48 412.09 417.86 422.34"

>SVG stands for Scalable

Vector Graphics and is a Web

graphics format.</tspan>

</text>

<rect x="431.85" y="122.062"

width="11.13" height="0.39"

fill="Black" stroke="Black"

stroke-width="0.1" />

<text font-family="CMR" font-size="7.85">

<tspan y="120.56" x="435.33">1</tspan>

</text>

<rect x="438.81" y="123.20" width="4.17"

height="0.35" stroke-width="0.1"

fill="Black" stroke="Black" />

<text font-family="CMSY" font-size="7.85">

<tspan x="431.9" y="123.6"

>�xE017;</tspan>

</text>

<text font-family="CMR" font-size="7.85">

<tspan y="130.08" x="438.81">2</tspan>

</text>

</g>

These fragments are embedded into a document
and are, then, processed into DVI using LATEX. The
conversion to SVG files using DVI2SVG is invoked.
Similarly to caching the HTML fragments (for serv-
ing HTML to clients), the SVG fragments are now
cached.

In the last step, the SVG fragments are assem-
bled to build a page using Velocity. The Veloc-
ity page provides an SVG skeleton, including the
fonts and embed the other SVG fragments. This

Preprint: Proceedings of the 2060 Annual Meeting September 6, 2006 10:37 1003

http://jakarta.apache.org/velocity/

Adrian Frischauf Paul Libbrecht

Figure 1: An ActiveMath page using SVG

step not only collects all the items for the page but
also determines the final appearance of the page and
the personalized appearance of the items; in the cur-
rent situation, for example, yellow shaded rounded
rectangles are put around each item.

5 Conclusion

We have presented the DVI2SVG processor and
how it has been integrated into ActiveMath.

Compared to other approaches of putting math-
ematics on the Web, DVI2SVG appears to carry
interesting promises:

• Compared to PDF-based solutions, DVI2SVG
offers richer interactivity being based on stan-
dard scripting features

• Compared to other solutions to convert TEX-
based files to HTML or MathML, DVI2SVG
ensures available fonts and the highest quality
of layout provided by the classical TEX/LATEX
algorithms.

• compared to approaches which make use of the
Flash player,3 DVI2SVG is more opened using
its XML format; moreover, fragments are eas-
ier to combine. A feature of the Flash player
format, however, which we have not yet found
in SVG is the ability to embed an SVG docu-
ment within another SVG document and keep
all interactivity inside as well; this could have

3 The Flash player presents animated vector graphics us-
ing a widespread plugin, see http://www.macromedia.com/.

avoided the repeated delivery of the SVG fonts
for TEX.
SVG appears to be a real opportunity for Web-

based presentation of TEX documents for the fu-
ture. In the current situation drawbacks remain:
the main problems concern the players which have
to be installed before one can use any SVG abili-
ties; SVG support is emerging in developer versions
of the Mozilla and Safari browsers4, but this support
is incomplete, in particular it is lacking the ability to
render embedded fonts, a fundamental ingredient of
the DVI2SVG approach and the only way to ensure
that all font-glyphs will be available on the client.

To date, the Java based SVG viewer Batik5 and
the latest version of the Adobe SVG plugin6, which
is only available for Windows, are the only players
which work well with DVI2SVG.

We hope to see a renewal of the Adobe family
of plugins following the merger of the two compet-
ing vector graphics leaders: Adobe and MacroMedia
could bring the widely spread Flash vector-graphics
plugins to fully support the SVG format.

References

[1] T. Bray, J. Paoli, and C. M. Sperberg-
McQueen. Extensible Markup Lan-
guage (XML). W3C Recommendation
PR-xml-971208, World Wide Web Con-
sortium, December 1997. Available at
http://www.w3.org/TR/PR-xml.html.

[2] Stephen Buswell, Olga Caprotti, David
Carlisle, Mike Dewar, Marc Gaëtano, and
Michael Kohlhase. The openmath stan-
dard, version 2.0. Technical report, The
OpenMath Society, June 2004. Available at
http://www.openmath.org/.

[3] D. Carlisle, P. Ion, R. Miner, and N. Poppe-
lier. Mathematical markup language, version
2.0, 2001. http://www.w3.org/TR/MathML2/.

[4] Jon Ferraiolo, Jun Fujisawa, and Dean Jack-
son. Scalable vector graphics (svg) 1.1 spec-
ification. Technical report, World Wide Web
Consortium, 2003. Available at http://www.
w3.org/TR/SVG11/.

[5] Michel Goossens and Vesa Sivunen. LA-
TEX, SVG, fonts. TUGboat, 22(4):269–281,

4 For the current status, see http://www.mozilla.

org/projects/svg/status.html and http://webkit.org/

projects/svg/status.xml.
5 The Batik SVG toolkit is available at http://xml.

apache.org/batik, it is a Java library which supports down-
loaded fonts but with limited performances

6 The Adobe SVG plugin is available at http://www.

adobe.com/svg

1004 September 6, 2006 10:37 Preprint: Proceedings of the 2060 Annual Meeting

http://www.macromedia.com/
http://www.openmath.org/
http://www.w3.org/TR/MathML2/
http://www.w3.org/TR/SVG11/
http://www.w3.org/TR/SVG11/
http://www.mozilla.org/projects/svg/status.html
http://www.mozilla.org/projects/svg/status.html
http://webkit.org/projects/svg/status.xml
http://webkit.org/projects/svg/status.xml
http://xml.apache.org/batik
http://xml.apache.org/batik
http://www.adobe.com/svg
http://www.adobe.com/svg

DVI2SVG: Using the LATEX Layout on the Web

2001. Available at http://tug.org/TUGboat/
Articles/tb22-4/tb72goos.pdf.

[6] M. Kohlhase. OMDoc: Towards an open-
math representation of mathematical docu-
ments. Seki Report SR-00-02, Fachbereich In-
formatik, Universität des Saarlandes, 2000. See
also http://www.mathweb.org/omdoc.

[7] Paul Libbrecht and Dominik Jednoralski. Drag
and Drop of Formulae from a Browser.
In Proceedings of MathUI’06, August 2006.
Available from http://www.activemath.org/
∼paul/MathUI06/.

[8] E. Melis, G. Goguadze, M. Homik, P. Lib-
brecht, C. Ullrich, and S. Winterstein.
Semantic-Aware Components and Services of
ActiveMath. British Journal of Educational
Technology, 37(3):405–423, may 2006.

[9] C. Ullrich. Tutorial Planning: Adapting Course
Generation to Today’s Needs. In M. Grand-
bastien, editor, Young Researcher Track Pro-
ceedings of 12th International Conference on
Artificial Intelligence in Education, pages 155–
160, Amsterdam, The Netherlands, 2005.

[10] C. Ullrich, P. Libbrecht, S. Winterstein, and
M. Mühlenbrock. A flexible and efficient
presentation-architecture for adaptive hyper-
media: Description and technical evaluation.
In Kinshuk, C. Looi, E. Sutinen, D. Samp-
son, I. Aedo, L. Uden, and E. Kähkönen, edi-
tors, Proceedings of the 4th IEEE International
Conference on Advanced Learning Technologies
(ICALT 2004), Joensuu, Finland, pages 21–25,
2004.

Preprint: Proceedings of the 2060 Annual Meeting September 6, 2006 10:37 1005

http://tug.org/TUGboat/Articles/tb22-4/tb72goos.pdf
http://tug.org/TUGboat/Articles/tb22-4/tb72goos.pdf
http://www.mathweb.org/omdoc
http://www.activemath.org/~paul/MathUI06/
http://www.activemath.org/~paul/MathUI06/

	Different Approaches to Support Mathematics on the Web
	The Scalable Vector Graphics
	DVI2SVG
	Support for Classical LaTeX Packages

	Integration with ActiveMath
	Example Conversion

	Conclusion

