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Abstract. The web, as we experience it nowadays, is heavily based on
search engines such as Google or Yahoo!. These engines are the essential
step to discover web-content that would, otherwise, only be available
after too many clicks. The field of computer-science which serves as their
theoretical basis is information retrieval. However, the main focus of
information retrieval is on textual content, that is words and sentences.
Little research has been done, however, both in terms of research or tools,
for information retrieval regarding mathematical content on the web as
can be seen, for example, in the overview [M05].

In this article, we present work done for the LeActiveMath learning
environment which stores and presents semantically encoded mathemat-
ical content. We have adapted information retrieval techniques to this
semantic content in order to offer to learners reasonably tolerant search-
ability for text, metadata, and formulæ. Our efforts follow information
retrieval principles stating the essential needs for fast response and easy
query inputs.

1 Introduction

ActiveMath is an intelligent web-based learning environment for mathemat-
ics, it presents semantically encoded mathematical documents to learners, and
allows them to practice by doing interactive exercises.1 ActiveMath uses a
fine-grained knowledge representation of mathematical documents based on the
OMDoc encoding [OMDoc1]. Using it, the learners’ competencies can be modelled
and adaptive behaviours, such as the choice of content needed to achieve a learn-
ing goal, can be provided. The EU project LeActiveMath, Language Enhanced
ActiveMath, developing a larger framework and content collection around Ac-
tiveMath. Within this project, the plain-text search engine available earlier
in ActiveMath has been refined to bring semantic search capabilities to users
which is the focus of our article.

Requirements analysis done among the partners of the project, including rep-
resentative stakeholders of the publishers’ and teachers’ communities, has indi-
cated that:
1 More information about the ActiveMath learning environment can be seen from

the project’s home page: http://www.activemath.org/.

http://www.activemath.org/


– the search tool of LeActiveMath should be very easy to use but should
allow querying for text, meta-information, as well as mathematical formulæ.

– the search queries should be reasonably tolerant as one expects frustration
to arise in a tool doing simple exact matches

– the search tool of LeActiveMath should offer access to all mathematical
content thus supporting explorative learning

We expect the search tool to be used by several types of users of LeActiveMath
who differ in their expectations and proficiency:

– the beginner learner uses it only for the purpose of searching quickly for a
reminder or to discover new content. He will search mainly for words and
for formulæ only if he can copy and paste them. The search interface and
presentation should be simple and straightforward for him.

– the advanced learner may want to see details about each item and maybe
search variants of presented item and search for mathematical formulæ or
items’ characteristics.

– an author may want to see all items, including the description of OpenMath
symbols, and see details about each.

1.1 Usage of LeActiveMath Knowledge Representation

LeActiveMath stores and presents content encoded in the OMDoc xml-language
added with metadata for educational purpose [LeAM-D6]. It is built on content
split in units which are called items: definitions, theorems, exercises... Items are
addressable by unique identifiers. Items have a granularity well-suited for our
search purposes: they are easily identifiable and recognizable by a user as a
separate entity and can be, partially, taken out of context.

Therefore the search engine searches for items and present results one item at a
time, including relations from this item to other items.

1.2 Information Retrieval for LeActiveMath

Following classical information retrieval vocabulary [vR79], OMDoc items are de-
fined as the documents of our search function. Based on the resonable tolerance
requirement, we expect the search results to be often too numerous to be easily
overviewed. Information retrieval indicates that a good paradigm is to provide
search ranking where a score is computed for each matched item indicating how
relevant the match is and to present search results from highest score on; addi-
tionally users are more likely to experiment with search and get results quickly
than take the time to wait for quality search-results [vR79].

Information retrieval has been mainly focussing on the retrieval of text docu-
ments and on textual search. Two essential ingredients are put to use:



– An analysis or tokenization process which converts the text documents that
will be searched in a sequence of tokens. Tokens are, typically, words, but
these may be the result of a translation which, for example, removes the “s”
character of plural words in English.

– An index which stores the occurrence of tokens in documents and can be
efficiently searched for. Queries are formulated as the search for documents
where tokens (results of the same analysis process) occur.

2 Prototype Description

The LeActiveMath search is a prototype that is part of the LeActiveMath
learning environment. In this section, we describe the essential ingredients of the
search engine.

2.1 Core Index

We have chosen the Lucene library2 to maintain the core index. This library
is a recognized open-source library and is in use in many industrial strength
systems (such as Wikipedia or Technocrati). It provides storage and indexing of
documents and high-speed queries on this index delivering the documents along
with query-match ranking. The Lucene library is also the base of the content
storage engine of the current ActiveMath LuceneMBase.

In our search, the documents are the items of the content. To build the index,
we process the following information for each item:

– the titles
– the metadata information
– the textual content
– the mathematical formulæ in the textual content

This section describes how the index is built based on this information, that is,
mostly, how texts in various languages and mathematical formulæ are tokenized.
Along this description, the possible low-level queries are presented. It presents
an overview of how each query is boosted, that is, is given a weight, in order to
enter the computation of the rank of a found document, and concludes with an
example illustrating all aspects.

2 See http://lucene.apache.org/.

http://lucene.apache.org/


Storage of metadata information Each OMDoc item can have a metadata
element. The metadata element is the place to store attributes of each item.
For example, the field of study for which this item is intended (e.g. physics,
law, ...) or the time one expects a learner will need to read the item. Metadata
attributes as a list of name-value pairs. Documents can be queried for using the
same name-value pairs.

The metadata of OMDoc items is also the container of relations between items, for
example, the fact that a definition depends on a proof. Since the content storage
of ActiveMath already has query facilities for these relations, the index does
not consider them.

Tokenization of text Following classical retrieval [vR79], the tokens are made
of words of the text; these words are, before, converted to lower-case, stemmed3,
and too common words are removed. This tokenization is language specific, we
use the classical stemmers of Porter [Por05] which was written for English and
generalized to many other languages. To respect the various languages, we encode
the token-stream of each language in a different field of the index. To support
different ranking for matches in the title compared to matches in the text, these
two fields are indexed separately.

Towards Fuzzy Matching of Text In order to support learners in their
searches one has to cope with words that are misspelled and to provide results
that were approximately matched (fuzzy matching).

Fuzzy matching can be done with the index data described above: the Lucene
library offers fuzzy matching based on the edit distance, that is, it allows ele-
mentary modifications of the token’s characters (add or remove a letter, permute
two, ...) which is then matched with lower score. The results of this form of fuzzy
matching yields sensible results most of the time, but sometimes leads to sur-
prises such matching “class” when searching for “flash”, It is well suited to match
words that have been misspelled, either at query or authoring time.

In order to provide an alternate form fuzzy matching of text, a phonetic tok-
enization of the text is stored using the metaphone phonetic algorithm. This
phonetic-tokenization algorithm is an enhancement of the original Soundex al-
gorithm of Russell and Odell typically used in spell-checkers, it translate words
having the same sound to the same tokens. The libraries we have currently found
work for English and German, and will be tested for their applicability in Span-
ish.

3 The action of stemming a word is to take it to its root so that declinations of the
same words end up being the same token. For example, groups is stemmed to group



Tokenization of mathematical formulæ As any information retrieval li-
brary, Lucene understands linear sequences of tokens. One wishes, however, to
query the mathematical formulæ with their structure. ActiveMath uses the
OpenMath standard [OM2] which organizes mathematical objects as trees of
symbols and applications. For the mathematical formulæ in texts, the sibling
order of xml-tree-walks produces a sequence of tokens that no sentence could
produce. The anlysis process tokenizes the OpenMath-application with a depth
indication, as well as the symbols, strings, floats, and integers of OpenMath:
For example, the formula sin x2 becomes:

_(_1 <OMA>
_OMS_transc1/sin <OMS cd="transc1" name="sin"/>
_(_2 <OMA>
_OMS_arith1/power <OMS cd="arith1" name="power"/>
_OMI_2 <OMI>2</OMI>
_OMV_x <OMV name="x"/>
_)_2 </OMA>
_)_1 </OMA>

Using this tokenization, we can query exact formulæ by an exact phrase match,
that is, a match for a sequence of tokens. As a given expression can occur at any
depth of a mathematical expression, exact phrase queries have to be expanded
as a disjunction of queries for each depth.

formulæ with blanks can also be queried for: the example above would be
matched by a query for the following sequence of tokens expressing the search
for the sine function applied to any argument would query for the tokens

_(_1 _OMS_transc1/sin * _)_1
where the * indicates a blank in the phrase query which matches anything as
far as the remaining part is matched.

2.2 From User Queries to Ranked Matches

We have described how the index is built from tokens and how it can be queried
and matched. Let us summarize how weight is assigned to fields so that those
matches that we expect are the most important ones are given the highest rank.
Queries will be made for text, for mathematical formulæ, and for metadata
attributes. These user-level queries are translated to disjunctions of index-level
queries each being given a boost-factor which influences the overall score of
matches. The latter is used to order the results.

This heuristics is prepared for LeActiveMath and may be tuned depending
on the results of the evaluation. The list below describes boost-factors of each
query-types which get multiplied if a match of the same query occurs.



– textual and mathematical matches are expanded into queries in title and in
text: a match in the title of an item count twice as much as matches in the
item’s text.

– exact text-matches and exact formulæ matches have factor 2.0
– metadata and keyword matches are boosted by 50
– fuzzy phonetic matches are slightly less boosted by a factor of 0.8
– formulæ matches with blanks have a boost decreasing with the length of the

matched blanks
– fuzzy matches with edit distance are boosted depending on the amount of

changes (so that a single change, which is probably a typo, yields a match
with a score close to an exact match whereas a radical change yields a score
close to zero)

2.3 Example Tokenization of an Item And Related Queries

We present a small example of an exercise with English text and title along with
a formula:

Trigonometric exercise Let us assume x < y.

Indexing decomposes the content of this item in the fields title-en, text-en,
and text-phonetic-en:

attr: type:exercise
title-en: trigonometr exercis
text-en: let us assum _(_1 _OMS_relation1/lt _OMV_x _OMV_y _)_1
text-phonetic-en : LT US B ASMN

With this content in the index, the following queries can be performed:

– textual query: if the user enters “trigonometry”, tokenization of the user-
query converts this word, among others, to a query for token ”trigonometr”,
which is exactly matched to the title yielding score 10.0.

– textual-fuzzy: user enters ”asuming”, tokenization converts it, among others,
to a query for the token ”ASMN” in the text-phonetic-en field which is
matched to the content of the phonetic english field (with score 0.8)

– metadata query: a query of the user for the type exercise would be reformu-
lated as an index-query for the token type:example in the field attr which
is matched to our item with score 1.0.

– mathematical query: if the user queries for the formula x < y, the query is
translated into a query for
_(_1 _OMS_relation1/lt _OMV_x _OMV_y _)_1
in the field text-en which is exactly matched to our formula yielding score
1.0.



2.4 The Search-Tool

The search tool uses the pre-processed content and search techniques described
in the previous section. We now present how the search facility is offered to
learners using ActiveMath and the ease of use of the search user-interface.

Fig. 1. search-field
in the menu

Search input The search-tool can be activated by the
input of search-words in the text-field placed for this in
the menu. This produces the results in the search-window.
Such a search produces the default queries: fuzzy matching
(both phonetic and edit-distance fuzzyness) of text in the
learner’s language for concepts in the current book.

The search-window enters the plain search mode, a mode
where the search is displayed as a single string as in clas-
sical web search engines.

Fig. 2. The plain search, seen when first opening the LeActiveMath search

In addition, a more elaborate syntax can be used to require or exclude some
word, change language, or query characteristics of the items.4

Searches can also be input using the advanced search (see figure 3) form which
allows a combination of queries for:

– text queries with or without fuzzyness and exact phrases, input within a
text-field

– mathematical expressions input using the Wiris input editor5 which allows
graphical input of formulæ as well as allows copy and paste of mathematical
formulæ from the content.

– item characteristics as can be found in the metadata of each items, entered
using pop-up menus.

4 More details on the query-syntax, mostly intended to authors or advanced users, can
be read online in the plain-text search-mode.

5 More about the Wiris input-editor can be read from http://www.wiris.com/.

http://www.wiris.com/


Fig. 3. The advanced search form illustrating a combinaed mathematical for-
mula query and metadata query.

Search result presentation The results, sorted by the scores provided by the
matches, are presented by title which, once clicked, show the full presentation of
the item. Mastery-bullets indicate the estimated learner’s mastery for this item.
Links allow the learners to go to other search pages.

Only a first page of search results is presented if more than 20 items are found.
This measure is approximately the amount of items that can fit vertically on
a screen and allows a fast presentation of search results to allow further explo-
rations of the user.

Integration of relevant web-sources In order to enable search of other math-
ematical web resources and to compare results of the searches, the result pre-
sentation adds links to submit the same query to search engines and content
collections such as the Google engine searching the Web6, the Wikipedia collab-
orative encyclopedia7, or and the MathWorld encyclopedia8.

Currently, these links can only be presented if the query is textual since the
sources do not support metadata or semantic mathematical markup.

This integration supports exploration and, at the same time, makes the user
aware of the sources which will support the user’s critical thinking in terms of
trust and proficiency.
6 The Google engine is at http://google.com
7 The Wikipedia encyclopedia is at http://www.wikipedia.org.
8 The MathWorld repository is an enterprise of Wolfram Research Inc. and can be

reached at http://www.mathworld.com/.

http://google.com
http://www.wikipedia.org
http://www.mathworld.com/


Fig. 4. Searching for derivation and selecting a concept.

Search history and search states Each search and all results obtained and
browsed are stored in a search history. The LeActiveMath search engine tries
to store all states of the search tool user interface. This includes the input-
element under current focus in the search form, the search mode, the result
page, the item being currently viewed and details about its view. Each of these
states are numbered sequentially and can be re-invoked later, for example, once
the search-window is closed then re-opened. The history view presents a user
readable text of each query along with the titles of items shown. Each step can
be restored and continued with. This contributes to make the LeActiveMath
search similar in availability and memory to an opened dictionary on your desk:
one can forget about it but taking it back will restore its last state.

Item display Once a link in the search result list is clicked the search tool
displays single items aside of the search results. Single items display present
the type, title, content of the item, the notes and mastery icons as well as the
copyright link.

Items display is complemented with information from the metadata: in its simple
form, the for relations from and to this items are displayed, for example exercise



for this item or concept that this examples illustrates. Pressing a more link opens
a detailed view of the item’s metadata including all relations from and to this
items and all references to this item. The presentation of these relations allow
the learner an explorative navigation of the rich structure of the content.

Item display LeActiveMath is using the presentation architecture of LeAc-
tiveMath [ULWM04]. That is, it uses the same rendering engine and the same
notations, providing a consistent appearance of the mathematical knowledge.

3 Related Work

We briefly list the related work about the retrieval of mathematical documents
in order to situate our research:

– the MBase [FK00] project has inspired both the search function and our
content-storage. It offers a prototypical pattern matching of mathematical
formulæ with variables being instantiated by any sub-expression: for exam-
ple, querying f(A,B) = f(B,A) as search for any commutativity state-
ment. This project was based, mostly, on serial search along all OpenMath
objects stored in the database which is not a very scalable approach. We
have indicated in section 2.1 how our mathematical tokenization can match
mathematical expressions with variables being replaced by subtrees; we have
not achieved, however, the ability to compare two instances of instantiated
variables (for example when querying for f(A,B) = f(B,A) to match any
commutativity statement requesting that the terms A and B be matched
consistently). This form of query can be rephrased a query with joins and
deep-equality. Experts in the field of xml databases, when asked about this
form of matching seem to indicate no other strategy than serial searches.

– the MathQL project9 who’s goal is to search the CoQ-library has put forward
great goals in their mathematical search such as the application of unification
as opposed to pattern-matching. Such goals seem not reached yet.

– MoMM [Urb04] is a recent attempt at using formal rewriting rules to search
the Mizar Mathematical Library. We have not been able to identify the
feasbility of bringing such interreduction rules into the content of LeAc-
tiveMath.

– private discussions with the developers of the Digital Library of Mathemat-
ical Functions at the NIST institute indicate that search is being developed
in their project. The search implementation seems to be based on a trans-
lation of the TEX sources of the library and is helped by a large number of
heuristics providing a form of fuzzy matching.10

9 MathQL is a subproject of the HELM project, for more information: http://helm.
cs.unibo.it/mathql/.

10 See http://dlmf.nist.gov/ about the Digital Library of Mathematical Functions.

http://helm.cs.unibo.it/mathql/
http://helm.cs.unibo.it/mathql/
http://dlmf.nist.gov/


– The company Design Science Inc. has started an NSF-funded project on
mathematical search and are currently running evalutations of tools where
they can search MathML-presentation-encoded formulæ.11

– Paul Cairns has experimented with Latent Semantic Indexing in [Cai04] on
the Mizar mathematical library. His study seems to carry interesting results
with a very reasonable computational power.

– the thesaurus.maths.org project at Cambridge University has similar target
audience than our project. It is to be noted, however, that the thesaurus only
offer textual search having a TeX-based content-representation and semantic
annotations only for the navigation between items.

4 Future Work

The LeActiveMath search tool provides a sturdy basis for information retrieval
of OMDoc-encoded content. The search tool of LeActiveMath will enter in the
evaluation phase of the project and will be polished and refined accordingly.
Among others, the evaluation will measure the understandability of the search
engine in comparison to other search engines.

The usage of latent-semantic-analysis as described in [Cai04] is probably worth
following as much of the infrastructure that we have developed enables the mod-
els of vector-based occurrence-representation which is at the basis of this domain.
The engine should measure items close to the queried document by using a dis-
tance based on co-occurrences of tokens, both textual and mathematical. Care
has to be taken, however, as the latent-semantic-indexing process is patented
and only available in a relatively impractical library.

The presentation of search results will be enhanced most probably. The simple
display of mastery-bullets, item-types, and item titles may prove to be insufficient
(for example, many exercises simply bare the title Exercise). We should consider
avenues, such as the result-gisting approach presented in [CKS05] which display
which other queries a given result-document could also match.

Graph-based navigation of the items’ relations has been requested several times
and seems to provide an intuitive representation of the navigation through the
knowledge. We expect to embed such a navigation for learners.

11 More about the search project of Design Science can be found http://www.dessci.

com/en/reference/searching/.

http://www.dessci.com/en/reference/searching/
http://www.dessci.com/en/reference/searching/


5 Open Issues

We have not been able to assess how much interreduction of formulæ, as in
[Urb04], or search-query unification as promoted by the MathQL project, could
help a learner in his search. On the one hand, many rewrite-rules appear to be
obviously needed (for example, applications of the associativity or commutativ-
ity). On the other hand most of these rewrites actually inject knowledge into the
search which may surprise the learner. As an example, searching for the state-
ment of the derivation of a given function could be, naturally, rephrased as the
search for any function whose indefinite integral is the indicated function which
may leave the learner quite perplex.

Finally we wish to stress the integration of the external search engines within
the display of search results. They provide alternatives to users and also provide
comparisons to them: one will be able to evaluate the quality of the search en-
gines but also the quality of the searched content. Such resources as Wikipedia or
Thesaurus.maths.org are more appropriate for the search-and-browse paradigm
than the content of the LeActiveMath books since the latter were, mostly,
written for a book usage. For example, in many tests we have made with single
words, the corresponding search in the Wikipedia encyclopedia reached a dis-
ambiguation page which is a manually authored page branching to the many
possible interpretations of a single word. There is no such item types within
LeActiveMath knowledge representation yet. Experiments and comparisons
will enable us to infer the essential differences.
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