
What You Check is What You Get: Authoring with jEditOQMath

Paul Libbrecht
Competence Center for E-Learning, DFKI and University of Saarland, Saabrücken, Germany

http://www.activemath.org/∼paul/

Abstract—jEditOQMath is an authoring tool for the intel-
ligent learning environment ActiveMath. Its editing interface
is a simple source editor. However the wealth and power of
the authoring tool lies elsewhere, namely in its integration
into the learning platform, so that authors design a great
learning experience and not simply a great content editing
view. In this paper, we describe the tool and propose to name
its paradigm WYCIWYG: What you Check is What You Get.
The instrumental approach of human computer interaction
is applied to analyze the practice and to explain how the
edited source becomes the instrument to communicate with
the learning environment.

Keywords-Technology enhanced Science Education; Learning
Systems Platforms and Architectures; Intelligent Educational
Systems

I. INTRODUCTION

Authoring for E-learning is well known to require ex-
pertise from pedagogical, domain-specific, and technical
levels. Moreover, the technical expertise needs to lie both
in the usage of the environment the learners will encounter
and in the usage of the authoring tools. Therefore, making
authoring more accessible is an objective of research.

We focus on authoring for mathematics learning on the
web: this adds the challenges of the mathematical formulæ
(to be properly rendered, to interact properly with tools) to
the traditional web-challenges (multiple methods of naviga-
tion and somewhat unpredictable clients).

The described tool is a tool for the content-creation for
the ActiveMath learning environment [1]. It involves (1)
editing OMDoc files [2] with their semantic mathematical
nature and (2) experimenting with them in the learning
environment. The authoring tool approach covers aspects (1)
and (2) giving to the author significant opportuninities to
platform experimentation, discovery, and practice.

A. Outline

This paper starts with an introduction of the learning
environment, and a presentation of the related research and
tools in authoring. It then describes the normal author-
ing set up, and shows the three interaction modalities of
jEditOQMath: the files, the sources, the learning platform.
It follows with an exploration of how the old concept of
direct manipulation [3] or the more modern instrumental
approach [11] can be applied in this case. An outlook
concludes the paper.

B. The ActiveMath Learning Environment

The ActiveMath learning environment is an intelligent
web-based learning environment for mathematics. It serves
learning materials encoded in the OMDoc language [2] to
web-browsers adapting to their capabilities: in HTML+CSS
or in XHTML+MathML (see [4]). The semantic nature of
the OMDoc content allows many usages of the mathematical
formulæ, for example, to use them for copies in interactive
exercises or to plot them. ActiveMath maintains a model
of the learners’ competencies which enables it to suggest
learning content that best suits a given pedagogical objective.
Several tools allow learners to experiment with the mathe-
matical knowledge behind the content (such as the search
tool or the interactive concept-map tool).1

The content of ActiveMath is encoded in OMDoc [2].
This language partitions content elements in mathematical
items (e.g. a definition, an example), each with its own
identifier. The items are annotated with metadata and the
content is made up of text, hyperlinks, and formulæ encoded
in the OpenMath semantic format. The language is rich in
references: for pedagogical annotations (e.g. “this definition
requires this theorem”), to allow hyperlinks (“you may
also re-read the rule of integrals of sums”), or to allow
extensible mathematical symbols in formulæ (“the set of
natural numbers, the one with zero”).

C. Related Works

There is a wide range of tools being used for authoring
mathematical content. On the low interactive learning side,
one sees the usage of TEX, MS Word, MS PowerPoint, or
even Adobe Illustrator: these tools all focus on the delivery
of static documents in an e-Paper form hence their result
can summarized in a single view, and they can apply the
What You See Is What You Get paradigm. ActiveMath’s ex-
ploitation of the documents is considerably more interactive
including the possibility for reorganization, adaptive course
generation and the copy and paste of formulæ. Hence the
authoring requires a different paradigm.

On the intelligent authoring tools side, several research-
level authoring tools are presented in [5]. Most of the
descriptions there are descriptions of the knowledge models
while we focus on the description of an authoring workflow.

1See [1] for more details as well as the software’s web-site http://www.
activemath.org/Software.

http://www.activemath.org/~paul/
http://www.activemath.org/Software
http://www.activemath.org/Software

The REDEEM learning environment, similarly to Active-
Math, allows authors to organize the content annotations
so as to produce particular sequencing. REDEEM’s user-
model is very simple with authors quite in control of it
while ActiveMath’s is more extensible as it can be enriched
by combining multiple external content. One of the lessons
learned from REDEEM’s authoring tools article [6, p. 229]
is that authoring tools will be more useful if they easily
support progressive authoring.

One of the model adaptive tools, the AHA! environment
supports an integrated authoring environment [7] also based
on files access with the knowledge layer almost separated
from the content; the adaptive behaviours are, for most,
authored within (XHTML) markup enrichments. Active-
Math’s content embeds both knowledge and content layers
in a single layer which makes it easier to combine content
collections and manage them. Instead of having a dedicated
knowledge editor, jEditOQMath eases up the input and
maintenance of references.

II. SET UP

As is described in jEditOQMath tutorial2, we recommend
that authors use three tools for authoring:

• an author ActiveMath: a server on the author’s ma-
chine reading the files stored on the local computer

• a classical desktop file-management interface to man-
age files, grouped in content-collections (simple direc-
tories see [8]); the files are the content sources.

• a text editor presenting the content of the files and
allowing them to be enriched and modified.

All three tools have to be used in conjunction to obtain the
results of authoring, i.e. obtain the desired experience on his
learning environment. Once satisfied, the content collections
are transferred in order for them to become published, e.g.
on a server or on a repository for others to use.

III. TAME SOURCE AUTHORING WITH JEDITOQMATH

The activity proposed to authors follows the classical
text-source-authoring practices as used by the TEX and
MediaWiki: its input is provided by the editing of a text
document and its exploitation is done in a separate preview
space. The source editing, however, is not free plain text,
which is far too free to provide any useful information
to a system to deliver rich services. Similarly to others, it
is structured along a basic grammar given by the OMDoc
format. Moreover, many of its ingredients only make sense
when exploited by the ActiveMath learning environment.

The author acts on each of the three levels defined above
using commands to go from one to the other and back.

2The tutorial is made of steps in the book of tasks: http://eds.activemath.
org/en/tasks. A video can be previewed there describing most of the features
of this paper.

A. Interactions with the files

As is the case with most data collection, the materializa-
tion of the content of a project is made in directories of files
that live on the desktop of the author. This allows for multi-
ple preservation, archiving, and sharing mechanisms that are
available for them: send by mail, download, synchronize, put
aside, backup: those are all activities that are well known for
files. Content files in ActiveMath are stored in directories,
the content-collections, which form the unit of exchange as
explained in [8].

Files are also the elements an author can use to reproduce
his set up, for example uploading them to the ActiveMath
server of the school.

B. Interactions with the Sources

The textual source files of jEditOQMath are in a format
called OQMath: these files are XML files; they are mostly in
the OMDoc format but the OpenMath objects are in a shorter
syntax with $-separated islands. The editing of the XML
syntax and the maintenance of its readability is possible
because the grammar they obey to allows compact fragments
with hidden values provided by the DTD.

The manipulation of the text source follows the classi-
cal editing practices of texts which include actions such
as: copy-and-paste, simple keyboard input, drag-and-drop,
search-and-replace. All of these gestures are widely known
and implemented in an intuitive fashion in this classical edi-
tor, jEdit.3 Characteristic of a user-friendly input syntax, the
XML nature of the OQMath files is sufficiently flexible to
provide sufficient freedom to cater for personal preferences
in the placement of the tags; this freedom is known to be
widely used by TEX users.

1) Mathematical Formulæ: The mathematical formulæ
of the OQMath sources are meant to be processed by the
QMath tool: a processor that allows a very short and cus-
tomizable syntax to encode OpenMath objects. For example
$bˆ2-4ac$, $tan(π/2-x)=neg(tan(x-π/2))$ to
encode b2 − 4ac and tan(π/2) = − tan(x− π/2).

The customizability of the formulæ input is based on
notation definitions that authors can extend. These notation
definitions are the main input for the QMath [9] processor
which jEditOQMath uses. The customizability, although
detrimental to an easy exchange of fragments, seems to be
a critical freedom which mathematicians constantly exploit.
jEditOQMath supports the wide use of graphical symbols
in mathematics by supporting Unicode as well as enabling
the input through predefined abbreviations, which transform
such words as Delta to the greek letter ∆: the user types
the letters then requests the expansion which transforms the
letters into the single visible character. This approach raises
readability greatly compared to classical TEX sources, which
keep macros as words.

3jEdit is a java-based editor under the GPL, see http://www.jedit.org/.

http://eds.activemath.org/en/tasks
http://eds.activemath.org/en/tasks
http://www.jedit.org/

2) Populating the Source: jEditOQMath helps inputting
“the right text”.This is presented here while, in the next
section, we shall see how to make sure it is “correct”.

First-time users of jEditOQMath will start by using the
templates, to follow the default practice. The templates allow
to create the skeleton of a new document, all common-use
content-items, and common constructs inside the items (such
as formulæ or images). Because templates are made to create
content that is modified thereafter, the expected places to be
filled are marked with template-zones, islands surrounded by
French quotes. After the template is inserted, a click jumps
from template zone to template zone, by a command.

Copying from outside of jEditOQMath is another way to
start inputting content. An area where input is challenging
is the input of references: they are of utmost importance
to construct the knowledge structure that contributes to the
intelligent behavior of ActiveMath as well as to support
navigation. References can be dragged-and-dropped from an
ActiveMath web-page (for example the title of an item in
the rendering of a book-page in ActiveMath). Another way
to insert references is to the “searchable items list”, a tool to
find items by IDs in order to navigate to or reference them.

Copy-and-paste of formulæ is another area where a
transfer from outside is offered: some TEX-encoded and
MATHML-encoded sources are supported. This paste func-
tion is of use to discover the encoding of mathematical
formulæ from the web in the wild but can only work for
formulæ that “make sense” in the current context: they are
converted to OpenMath using the symbols available and to
QMath using the available notations.

Finally, input of the XML tags that constitute the
structure of the document is supported by the grammar. It has
been a deliberate choice to keep the OQMath files in XML
format: many tools with a rich feature set support its edition
and this support is fundamental for users that are unsure of
the possible inputs. jEdit, with its XML plugin, offers at
the input of the start-tag character < a pop-up indicating all
possible children (according to the DTD); moreover, a tag
can be edited which displays a window documenting each
attribute and its allowed values; finally, jEdit allows the user
to hide parts of the XML tree, to fold them: this has been
most often used by authors to maintain readability.

We have seen in this section all the facilities to input
and maintain a readable source; the result of this editing
process is a file that should conform to particular standards,
the application of which is described in the next section.

C. Validation

Having input the necessary text, the author wishes to make
sure it is understandable, and it is working as intended
since the source is only a means towards the creation
of an anticipated learning experience. This fundamental
expectation has to be checked by the author.

The first method to ensure it is understood is called
validation: an automated process that performs checks on
the content and reports to the user.

The first validation happens upon saving: it is checked
that the XML is well-formed and DTD-grammar-compliant.
The reported errors are presented in an error list organized
by file and line numbers as predicted by the system.

Two more validations happen during the build process
initiated by the author to transmit the content to the server.

The conversion of mathematical formulæ may trigger
conversion errors which are reported similarly. Finally,
an important validation is done at the end of the build
process when the content storage resolves all references.
The references are input in short forms (often as relative
references) and the resolution uses imports elements to
resolve them. Resolution errors are shown within the vali-
dation and QMath-transformation errors: Because the QMath
transformation is tuned to map lines to lines, the reference
error reports are presented at the right line number in the
OQMath sources hence are, for most easy to fix in place.

D. Exploitation of the Content Sources: the Build

The build process is invoked by running an Ant build
by the author who wishes to preview his content. The
build process triggers: conversion of the QMath islands, the
automated production of collection organizations (a table-of-
contents as explained in [4]), a reload to the author’s Active-
Math’s content storage, which resolves all references, and
invalidates the changed items of the presentation-system’s
cache (see [4]). The build process sketched here is a routine
task for all.

Once the build process has succeeded, the author can view
the content. If he has just been inputting new content he
will be looking at its rendering by the navigation to the
appropriate page. Quite often, however, the content is edited
beyond the simple input of new items.

E. Interactions with the ActiveMath Platform

In the previous sections, we have described the editing and
transformation processes operated on the content sources to
yield a set of OMDoc files that ActiveMath can load. Our
author can now use his web browser to inspect what the
resulting experience will be like. As often done on the web,
most of the ActiveMath web-browser pages which deliver
content can simply be reloaded to see the effect of the
changes of content from the same perspective, e.g:
• in pages of a pre-recorded book, a click on the page

link will display the updated content
• search queries are stored with the user-history, a reload

will do the search again, on the updated data
• an interactive exercise window carries all the inputs in

its URL; a reload will reproduce each user’s interaction;
this can be used, for example, to check feedback repairs

Figure 1. A typical screen layout of WYCIWYG: the files on the left, the
content edition in the middle, and a preview on the right.

• the course generation can be run again to obtain a book
taking advantage of the changed items

One should note that the perspectives above are quite diverse
in nature but this list is only a sample of the aspects, under
which an author might want to check the result of his
authoring activity. The diversity of these aspects has justified
what is currently felt as a limitation of jEditOQMath: the
lack of an immediate preview of the result of the last
authoring action following a reload. The author believes
that the wealth of perspectives is close to how an author
conceives the (intended) usages of the learning environment.

IV. DIRECT MANIPULATION FOR AUTHORING

This section reviews how direct manipulation, one of the
principles of human computer interaction, which has been
coined by B. Shneidermann in [3], applies to authoring of
e-learning content. Direct manipulation refers to the immedi-
acy of effects on the data in relation to the actions of the user.
It has most often been used in a comparison between console
interactions (such as a Unix shell) and visual paradigms
(such as a desktop file system). The analysis of Frohlich [10]
is more nuanced and summarises the lessons of experimental
investigations following the direct manipulation proposal
of [3]. Among these, one sees two claims [10, p. 475]:
• Visualisation of output data seems critical to the bene-

fits of direct manipulation
• Visualisation of input data may be less important
The authoring approach of jEditOQMath follows these

principles: the input interactions are done by the manipula-
tion of file objects and textual sources with effects visible
on the resulting learning platform as quickly as possible.
Similar practices can be found in user-interfaces for the TEX
layout processor: the user’s objective is the realization of the
resulting view but his actions are carried on the source.

This approach can be opposed to the WYSIWYG ap-
proach, which requires the editing interface to be the same
view as the target interface. This is doomed to fail when
authoring for learning content on the web since What You
Get cannot be captured in one view.

A more modern characterization of direct manipulation
has been laid by the definition of instrumental interaction

as in [11]: this approach describes the users as manipulat-
ing instruments, which are mediators to data objects: they
operate commands on them and provide feedback to the
user based on them. jEditOQMath can be analyzed by this
method: the manipulation of the source is a manipulation
of a readable and structured text that represents the content
which the ActiveMath learning environment exploits. The
source is a representation of the content that the instrument
jEditOQMath offers for view and manipulation; another
instrument of content manipulation is the author Active-
Math as described in section II. This instrumentalization is
particularly visible in the input of mathematical formulæ
based on the QMath notation definitions: the authors’ role
is not to provide the QMath expressions but the underly-
ing OpenMath expression; we experienced the mapping of
QMath to OpenMath objects to be easily explained but that
QMath expressions cannot be taught alone, they need to be
explained with the OpenMath understanding in mind (e.g.
with an understanding of the meaning of each symbol used).

An important nuance about the instrumental interaction
approach is that the instrument jEditOQMath limits its feed-
back to source and validation but that another instrument, the
author ActiveMath, allows for a rich feedback. Moreover,
this instrument is going to be the same tool that the learners
will use. This view of the usage of instruments seems
consistent with the instrumental genesis view of [12], which
considers the instruments as mediators that may evolve along
the usage, the latter giving them their meanings: the author
builds these meanings along his experiments.

We propose to name WYCIWYG the paradigm imple-
mented in jEditOQMath: What You Check Is What You
Get. The idea is that the editable objects of authoring are
manipulated with the file and editor instruments with much
of the feedback only obtainable by checking-routines within
an environment that is close to the delivery environment.
The WYCIWYG paradigm is classically found in online
authoring where an authoring tool view always needs to be
completed by a preview (e.g. using DreamWeaver, Conflu-
ence, or MediaWiki). The WYCIWYG paradigm is rooted in
the cycles between editing and previewing, which are similar
to the cycles of writing and reflecting that M. Sharples
described in How we write: Writing as Creative Design [13].

V. OUTLOOK

In this paper, the three authoring places have been intro-
duced: the content collection files, the source editor, and the
preview learning environment. They are depicted in figure 1.
jEditOQMath is at the heart of these places: it is the editor,
can open the files, and can request the server to process and
reload so that the changed content can be viewed.

WYCIWYG is a significant paradigm to cope with com-
plex, multi-dimensional web based learning systems, partic-
ular but not necessarily exclusive to Mathematics. Unlike
conventional e-Paper, a web-based learning system exploits

hidden features and dimensions (sometimes wildly) which
cannot be made viewable all at once at a particular point in
time. In order for the authoring process to be complete, it
needs appropriate checks which the author performs by using
the platform. We dare say that this paradigm is characteristic
of the E-learning authoring activity, or, at least, of any
authoring activity who has a similarly complex range of
perspectives expected, all, to be used by some user.

A fundamental requirement of the jEditOQMath workflow
to the learning environment is the support of incremental
changes to be previewed iteratively. This requirement
is, however, also important for the user interface of the
learning environment for which ongoing work is being made.
It is satisfied for several aspects of the learning platform
such as book browsing, but some other features could
honour it better. Among others the addition or removal of
a collection, which needs server indexing and restart. Some
exercise sequences or interactions with the course generator.
Last but not least, little has been done towards modifying
or experimenting with an arbitrary learner-model although
many pedagogically relevant features of ActiveMath depend
on its correctness. In many cases, an author has to redo many
operations to achieve testing; research will show if handles
to regain the perspectives may be available.

The preview and edit cycles we have described as routine
operations following the WYCIWYG paradigm which is
common in widespread authoring tools (e.g. DreamWeaver)
but seems to be almost ignored in the authoring literature as
examplified by most of the articles of the survey book [5].

A generalization of the WYCIWYG paradigm arises when
different persons with different competencies are involved:
for example an encoding person, a pedagogue and domain
expert, and a learning environment usage expert. Collabora-
tion scenarios of this nature are most common in multimedia
agencies but are not so commonly studied or applied to
authoring tools literature. The book [14] is a start for the
corporate learning world.

Planting roots of the authoring activity in the learning
environment has a potential to transform consumers of
the learning platform, from intensive users, through active
sequencers, into active creators of learning experiences.

ACKNOWLEDGMENT

Research for this paper has been supported, among others,
by the EU projects LeActiveMath (IST-507826) and Math-
Bridge (ECP-2008-EDU-428046). The author wish to thank
the many authors that have provided feedback to the making
of this authoring tool, their trainers, Éric Andrès and Michael
Dietrich, as well as AJG Bäumel and S. Sosnosvky for their
comments to this paper.

REFERENCES

[1] E. Melis, G. Goguadze, M. Homik, P. Libbrecht, C. Ull-
rich, and S. Winterstein. Semantic-Aware Components and
Services of ActiveMath. British Journal of Educational
Technology, 37(3):405–423, may 2006.

[2] Michael Kohlhase. OMDoc: An Open Markup Format for
Mathematical Documents [version 1.2], volume 4180/2006
of LNCS. Springer Verlag Heidelberg, 2006.

[3] Ben Shneiderman. Direct manipulation: a step beyond pro-
gramming languages. IEEE Computer, 16(8):57–69, 08.1983.

[4] C. Ullrich, P. Libbrecht, S. Winterstein, and M. Mühlenbrock.
A flexible and efficient presentation-architecture for adaptive
hypermedia: Description and technical evaluation. In Kin-
shuk, C. Looi, E. Sutinen, D. Sampson, I. Aedo, L. Uden,
and E. Kähkönen, editors, Proceedings of ICALT 2004, pages
21–25, 2004.

[5] Tom Murray, Stephen Blessing, and Sharon Ainsworth. Au-
thoring Tools for Advanced Technology Learning Environ-
ment. Kluwer Academic Publishers, Dordrecht, 2003.

[6] Shaaron Ainsworth, Nigel Major, Shirley Grimshaw, Mary
Hayes, Jean Underwood, Ben Williams, and David Wood.
REDEEM: Simple intelligent tutoring systems from usable
tools. In Murray et al. [5].

[7] P. De Bra, N. Stash, D. Smits, C. Romero, and S. Ventura.
Authoring and management tools for adaptive educational
hypermedia systems: The AHA! case study. volume 62
of Studies in Computational Intelligence, pages 285–308.
Springer-Verlag Heidelberg, 2007.

[8] Paul Libbrecht. A model of re-use of e-learning content. In
Proceedings of ECTEL 2008, Maastricht, Markus Specht and
Pierre Dillenbourg (eds), volume 5192 of LNCS. Springer
Verlag, Sept 2008.

[9] Alberto González Palomo. QMath: A human-oriented lan-
guage and batch formatter for OMDoc. In Kohlhase [2],
chapter 26.2. See http://www.mathweb.org/omdoc.

[10] Frohlich David. Direct manipulation and other lessons. In
Handbook of HCI: Second edition, chapter 22, pages 463 –
488. Elsevier Science, Amsterdam, 1996.

[11] Michel Beaudouin-Lafon. Instrumental interaction: an inter-
action model for designing post-wimp user interfaces. In CHI,
pages 446–453, 2000.

[12] Ghislaine Gueudet and Luc Trouche. Du travail documentaire
des enseignants : genèses, collectifs, communautés. le cas des
mathématiques. Education et didactique, 2(3):7–33, 2008.

[13] Mike Sharples. How we write: writing as creative design.
Routledge, London, New York, 1999.

[14] Peter Loos, Volker Zimmermann, and Pavlina Chikova, ed-
itors. Prozessorientiertes Authoring Management. Logos
Verlag, Berlin, 2008.

http://www.mathweb.org/omdoc

