
A Presentation Architecture for Individualized Content

Alberto Gonźales Palomo, Paul Libbrecht, Carsten Ullrich
University of Saarland and German Research Center for Artificial Intelligence

Saarbr̈ucken, Germany

{alberto,paul,cullrich}@activemath.org

Abstract

A modern approach for generating individualized web-sites is to compose a page out
of individual elements, for instanceXML -fragments, which is eventually transformed to
HTML . If the generated pages differ for each user, then the required transformation pro-
cesses put a heavy load on the server, hence slowing down response times significantly.

The learning environment ACTIVEMATH uses this composing approach to generate
learning courses that suit best the needs and goals of the individual learner. For instance,
depending on their current knowledge, different users that learn the same content get pre-
sented courses that differ in length and in amount and difficulty of exercises and examples.
Currently, the learning materials are transformed in one step fromXML to HTML (or other
output formats).

The learning materials are encoded in a language calledOMDocwhich encodes seman-
tically the fragments as well as the mathematical formulae. This article hence provides an
approach to the answer “How can Semantic Web technology be used to improve adaptation
and information retrieval?”. Moreover the ability to generate multiple output formats from
the same content source is a central requirement of the architecture. It provides a first step
towards device adaptation providing, currently, an on-screenHTML version and a printable
PDF version.

This article describes the architecture we developed to solve the performance prob-
lems that arouse out of the page generation process. In this architecture, the generation
process is divided into several layers, with each layer adding/transforming well-specified
data. Among other advantages, this approach allows caching of individual transformed
fragments. We hope that in this way the performance problems can be reduced.

1 Motivation
A current trend in the WWW is the generation of individualized web pages. Individualization
as meant as in this article covers the complete range from inserting small pieces of text (such
as the user’s name) to composing the complete text of a page depending on properties of the
user. An area where this kind of individualization certainly makes sense is education. Although
most of the (commercially and freely) available learning materials are of a static nature (HTML

pages, sometimes extended by applets,PDF, PPT, etc.) learning materials individually tailored
to the student’s needs definitely support their learning process in a favorable way.
One technically advanced e-learning system is ACTIVEMATH [7], a web-based learning envi-
ronment that provides a throughout individualization. Learning materials, such as courses, are
available in a common “static manner”, but are also constructed dynamically according to the
student’s learning goals and his current knowledge. The pedagogical advantages of the dynamic

1

individualized generation are numerous: The learner has at his hands a course specifically tai-
lored to his needs that contains only the necessary content at the adequate knowledge level.
However, when we were using ACTIVEMATH for the first time in an university course, some
drawbacks of technical nature arouse. Several complaints considered the sometimes slow re-
sponse of the system. In the first, ad-hoc implementation, every time the student visited a page,
the system (re-)builts this page from scratch. These fetching and transformation processes of
course put a significant load on the server.
To overcome this and other problems detailed below, we analyzed and structured the presenta-
tion process, and, building on this analysis, developed a general architecture for the generation
of individualized web pages. In short, we divided the presentation process in several separated
stages, where each stage adds distinct individual information. Thereby, caching is possible in
several places.
We think this architecture is of general interest. Although developed in an educational setting,
the architecture we propose is general enough to be applied in all settings where throughout
individualization is needed.
We will start with an overview on the generation of individualized web pages, how it is done in
ACTIVEMATH, and the advantages it offers. Then, after talking about the problems that arouse
out of our first, “naive” presentation engine, we will present the new, layered presentation ar-
chitecture. The article concludes with a comparison of our architecture to existing frameworks.

2 Individualized Web Pages
From the very beginning of the web, first approaches of individualization were realized by CGI
scripts which generated the complete text of the delivered page. They were followed byscript-
in-pageapproaches, such as Java Server Pages or Active Server Pages. There, theHTML -code
of a page contains special tags that are replaced by individual content. The advent of structured
content provided byXML encodings opened the door to data processors: These engines gener-
ate browser-viewable content from a content whose structure is well defined and well known,
the eXtensible Stylesheet Language Transformation (XSLT) process is a good example of such
an approach: using anXML -encoded source and a few parameters, it produces the viewable
content.
A good example of state-of-the-art individualized generation of web pages based on an underly-
ing XML -representation is ACTIVEMATH. In the following section we will provide some details
on ACTIVEMATH with respect to this feature.

3 ActiveMath, a Web-Based Learning Environment
ACTIVEMATH is a web-based, user adaptive environment for mathematics education. It em-
ploys content encoded in a semanticXML -representation and integrates several mathematical
systems to support exploratory learning.
ACTIVEMATH generates individual courses for each learner. An example is shown in Figure1.
In the example, both users want to learn about the mathematical conceptmorphism of groups.
Eva, on the left hand site, already knows a bit about the mathematics necessary to understand
morphisms. Therefore, the course generator of ACTIVEMATH has composed a shorter course
for Eva (see her table of content) than for Anton, on the right hand site, who misses some
prerequisite knowledge. In addition, the content within a page differs. Eva know the concept
monoidsquite well, and the course generator generated a page that serves to reactivate this
knowledge. Anton however, for whom this concept is unknown, gets presented a page that
among others provides a detailed example on monoids.
More generally, ACTIVEMATH provides individualization with respect to a complete course,
the elements on a page within a course, and the text within the elements. Hence, ACTIVEMATH

requires a powerful underlying knowledge representation. The following section provides some
details about it (for more information, see [9]).

2

Figure 1: Two courses for the same learning goal, but for different learners.

3.1 ActiveMath’s Knowledge Representation
ACTIVEMATH knowledge representation is a semanticXML encoding. As ACTIVEMATH is
currently targeted at teaching math, it usesOMDoc. OMDoc, documented in [6], provides means
to represent the structure of a mathematical document. It allows the encoding of different cate-
gories of items at paragraph level: mathematical concepts such as definitions and theorems, and
further items such as examples, exercises, and elaborative texts.
OMDocallows the annotation of items and documents with metadata. The metadata covers
pedagogical aspects of an item such asdifficulty and relations between the items such as
depends-on or similar-to .
The knowledge representation contains some but not all metadata of the Learning Objects Meta-
data standard of IEEE [5] but includes additional relationships and characterizations that are
missing in this standard.
Furthermore,OMDocallows to represent the semantic of a mathematical formula. Whereas
in an usual text-documenta + b simply represents a string and+ the ASCII character 43, the
OMDocencoding clearly specifies which mathematical symbol is meant. For instance, besides
the addition of numbers,+ often denotes a group operation. To know the semantic of a mathe-
matical object is especially important if the content is used in or interchanged between external
systems such as computer algebra systems (which ACTIVEMATH uses for interactive exercises).
Another example are copy and paste operations where the user marks a formula and wants to
copy the corresponding mathematical object, not its textual representation.

3.2 Current Generation and Presentation Process
Mathematical learning material, i.e., the course and its pages, is dynamically generated on the
user’s demand by selecting and composing theOMDocitems. The course generation process
happens as follows:
Starting from the goal concepts chosen by the user or a teacher, all concepts they depend upon
are retrieved recursively from a knowledge base. The result is a collection of all concepts that
need to be known by the learner in order to be able to understand the goal concepts together
with additional material such as examples and exercises. Then pedagogical rules are applied
which take information about the user (stored in an user model) into account. These rules
determine, e.g., the types of items to appear on a page, the appropriate level of difficulty and
the order in which the material is presented. The result depends on the available content, the
current state of the user model, and on the chosenlearning scenario: Different documents are
generated for different scenarios such as “overview” or “exam preparation”. Eventually, the
learning materials are ordered and put into a hierarchy.

3

For the presentation, the generatedOMDocpages are transformed viaXSLT to HTML , PDF, or
SVG. A typical delivery of anHTML page is triggered by anHTTP request containing the user
name, page number and an identifier of the current course. The ids of the to be presentedOMDoc
items are looked up using the page number and the table of content of the course. Then they
are retrieved from the knowledge base. The resultingXML -document is pre-processed (adding
of server specific information, see Section4.2) and is then transformed viaXSLT which directly
produces theHTML page annotated with additional individual information (i.e., allowing the
user to resume a course at the position he left).PDF-documents are produced in a similar way;
additionally thePDFLATEX1 program is called.

3.3 Advantages of Dynamic and Individualized Generation of Web Pages
The dynamic and individualized generation of web pages realized in ACTIVEMATH offers sev-
eral advantages:

Re-use of Content Developing content, especially learning materials, is time and money con-
suming. By re-using and improving already created content, (hopefully) the costs are reduced
and quality enhanced. ACTIVEMATH offers a very fine-grained re-use: Instead of complete
pages (or even courses), single paragraphs form the basis of the re-use. This level is not only
suited for learning, for instance, parts of anews storycan be inserted or skipped depending
on the background knowledge of the reader. In this way, different parts of the content can be
re-used for a variety of purposes.

Multiple Output Formats Generating the content from a semantic, presentation-independent
knowledge representation makes it possible to render to multiple output formats depending
on the current needs of the user. Not everything that looks nice at the screen still looks nice
when printed out. Guidelines for ergonomic layout differ depending on whether the content
is targeted for print or online viewing. Therefore, a system should provide the possibility for
elements to have different renderings depending on the output format. But this is only possible
if the concrete rendering is not hard-coded in the content. For instance anemphasize is
not equivalent to a purely presentationalbold . The style-sheets decide which presentation is
chosen for emphasize.

Personalization of Content As already mentioned, ACTIVEMATH offers truly individualized
content generation. The advantages of such individual generation are numerous: The user needs
less time to find and to learn about the content he is interested in, he is not de-motivated by
content too difficult for him to understand, neither bored by facts he already knows about.

Combining Learning Materials The author, who writes the content, and the editor (in an
educational setting the teacher), who selects which content to present, can but do not have to
be the same person. Therefore, combining learning materials can be far more laborious than
on first sight, especially in mathematics and other formal sciences: Different authors tend to
use different notations. A well known example is the logical concept ofimplication which is
presented differently in almost every book about logic, e.g., as⇒ or⊃.
The concept ofcompositionis a more challenging example that requires not just replacing a
symbol: To denote the composition ofg followed by f , in general, a German author would
write f ◦ g, whereas an English author would writegf .

1LATEXis a typesetting program designed for high-quality composition of content.PDFLATEX is a variant that
producesPDF.

4

Combining such materials when they are written in traditional presentation-oriented languages
requires tedious manual rewriting. However, if a presentation-independent knowledge repre-
sentation is used, then the is presentation specified separately from the content, for instance in
a XSLT-rule. To determine their preferred presentation, authors that combine materials from
different sources simply specify the presentation rules for the necessary concepts; they do not
have to worry changing the content itself.
We esteemed the background information given in this section necessary specify the setting of
our system and we omitted several technical details concerning semantic encoding. For a more
concise overview on knowledge representation and management, please see [9].

3.4 Problems Regarding Presentation
Our first “naive” presentation engine that generates the desired output format directly annotated
with individual data in one step gave rise to several problems:

Server Load At every page request the presentation process was repeated completely starting
from fetching the content to transforming it to the output format. Of course, this puts a heavy
load on the server. Especially the transformation process requires a lot of resources. Caching the
fully generated pages does not alleviate the problem neither, as although the students following a
course would share some of the items on a page, the other items such as exercises and examples
will certainly differ.

Performance As a direct consequence of the high server load the response time of the system
decreased, in particular if a large amount of users accessed it simultaneously. This is especially
unpleasant as for web applications slow response times are critical. For instance, our students
reported that the long delays were a major source of de-motivation.

Fixed Presentations If several presentations for the same concept are possible, some instance
has to decide which presentation to use. For students in a course this decision is normally taken
by the teacher as he wants to assure that all his students work with the same notation. An in-
dependent learner however, can very well make his own choice. Our former presentation archi-
tecture used one stylesheet for all users of one ACTIVEMATH installation, thereby disallowing
a flexible choice of the presentation.

Missing Abstractions The recent development of thePDF presentation process raised sev-
eral missing abstractions in our current presentation architecture. As it was primarily targeted
for HTML output, the assembly process of theOMDoccontent was optimized with respect to
HTML . For instance, multiple choice exercises were inserted in a special way directed at the
presentation in a pop-up window (which is of course not suited for a print-version of a page).

4 Layered Presentation Architecture

4.1 Processed Data
We performed an analysis of the data that is processed/added during the presentation process to
determine to which extent the process could be optimized with respect to the above problems.
The analysis yielded the following kinds:

Content. Obviously, the presented content forms the major and most important type of data.
Content is mostly static in the sense that the containing text does not change (but see
Section 4.4.2). However, the overall content is of course dynamic, as different users get
different content.

5

Knowledge
Base

Fetching

Knowledge
Base

Pre-Processing Transformation Assembly Styling Personalization Compilation

Single Elements Complete Page

External
Documents

:Caching Possibilities

Figure 2: A graphical representation of the layered presentation architecture

Server-Specific Information. This subsumes data added by the current server, such as the ver-
sion of the used ACTIVEMATH, the address of the server, links, or resource descriptions
for interactive exercises.

Presentation Information. This data specifies how specific symbols are to be rendered (rep-
resented inXSLT-stylesheets).

Personal Information. While the individual learning materials that are presented to an user
are covered by the above content type, personal information is additional individual data
added on top of the content. A good example is the indication of the state of knowledge
of the user with respect to an element. For instance, if Anton has only very limited
knowledge of an element, it can be annotated in a special way, e.g., underlined with red
color. Another example forHTML -presentation is the preferredCSS-stylesheet of the user.

4.2 Splitting the Presentation Process
Following the analysis we split the presentation process in several layers, with each layer
adding/transforming a specific kind of data. Figure2 provides a graphical representation of
the new architecture. The layers are the following:

Fetching. Collects requested content from the knowledge base. The output of this stage are
XML -fragments.

Pre-Processing.Inserts server-specific information into theXML content. For instance, if the
content is contained in several distributed knowledge bases, this step changes the ids of
the elements to avoid duplicated ids.

Transformation. Performs a first transformation to the desired output format by the application
of anXSLT-stylesheet to the document. The output of this stage areHTML or LATEX-frag-
ments.

Assembly. Joins the fragments together to form the requested pages. This layer uses theXSLT

presentation information.

Personalization. Uses personal information to add individually different “beautifications” to
the document, such as knowledge indicators, for theHTML generation the user name in
theHTTP-links and the usedCSS-stylesheet, for LATEX the used macro-packages.

6

Compilation. Applies further processing to convert the content presentation into a format that
can be displayed by the client. This step is not needed forHTML asHTML can directly
be presented by web browsers. However,PDF output requires the compilation of the
generated LATEX-sources.

4.2.1 An Example
This section provides a small example page of the page generation and shows how the content
(simplifiedOMDoc-element) is transformed in each stage. Let’s assume that the user requests
a page that contains only the definitiondef1 . In a first step, this content is fetched from the
knowledge base:
<definition id="def1">

Definition 1 with a reference to
<ref xref="def2">definition 2</ref>

</definition>

The pre-processing step replaces the ids of the elements. Here, it adds the name of the knowl-
edge base as a prefix to the id, yieldingmbXdef1 .
Then theXML -fragment is transformed toHTML usingXSLT:
<div class="definition" id="mbX_def1">

Definition 1 with a reference to

definition 2

</div>
In the assemble stage, the elements (in this case only one element) are assembled to form a
completeHTML page:
<html>

<head/>
<body>

<div class="definition" id="mbX_def1">
Definition 1 with a reference to

definition 2

</div>
</body>

</html>

Eventually personal information is added and the page is send to the user’s browser:
<html>

<head>
<link rel="stylesheet"

type="text/css" href="colored.css"/>
</head>
<body onLoad="initializePageUser(’Anton’)">

<div class="definition" id="mbX_def1">

Definition 1 with a reference to

definition 2

</div>
</body>

</html>

7

4.3 Caching Possibilities
Talking about optimizations only makes sense if the assumptions under which the optimizations
take effect are made explicit. ACTIVEMATH was designed with two different use cases in mind:
In the group setting a large amount of users access more or less the same content. Although
the specific content of the pages can differ, the materials that need to be retrieved from the
knowledge base can be specified approximately. In an educational system this would correspond
to learners following a lecture, where the content will be the covered domain; in an online news
server this content could be the headline articles.
The second use case is the independent self-guided user. No assumptions can be taken about
what content he is interested in. For this group, caching the content of one user would not help
a second one, as most probably they are interested in different topics.
We designed ACTIVEMATH primarily for being used by a number of students learning about the
same content. Hence, the caching we propose is mostly directed at the group case. The second
case needs further investigation, although the proposed caches will not have any negative effect
for the self-guided use case.
The diagram in Figure2 indicates three points at which caching can take place:

At Fetching Level. ACTIVEMATH can retrieve its content from different knowledge bases that
can be distributed anywhere in the web. As response times will vary heavily, caching once
retrieved content at the ACTIVEMATH server can yield better performance, especially for
slow connections.

After Transformation. Applying XSLT-transformations requires a lot of resources. Therefore
we decided to cache the individual elements after their transformation. A drawback is the
additional memory consumption: For every output format, a proper cache is required. In
addition, personalization data has to be added after the transformation. ForHTML , this
can be achieved using anotherXSLT-transformation and/or JavaScript, for LATEX, macros
are used.

Problems can arise if elements are to be presented differently depending on the other
elements on the page, as at the time of transformation, the transforming component does
not know which elements will occur on the same page. For instance, a reference to another
element can be transformed to a hyperlink that opens a new window with the referenced
element if it is not present on the current page. Otherwise, if both elements occur on
the same page, the focus of the page is changed to the anchor of the referenced element.
However, we were able to overcome this and similar problems we encountered by the use
of Javascript.

After Compilation. Caching a completely generated and individualized page speeds up access
of often visited pages and going back/forward within a site. This cache is usually provided
by the browser cache and can be controlled to some extent using thehttp meta tag
expires that takes as an argument the date when to refetch the data from the server.
However, often this decision can only be taken by the server itself. More often than not,
whether a specific page changes does not depend on the time passed since the last visit
but on the actions taken by the user. Adding such a cache on the server side definitely
adds unrealistic memory requirements if the amount of users is unlimited. In cases that
restrict either the amount of users or the number of groups that access different content,
caching complete pages can be an option.

8

4.4 Additional Considerations
4.4.1 External Documents
Another advantage of the layered architecture is the personalization of third-party content not
available in the underlyingXML -representation.
Most authors don’t feel comfortable changing from their preferred content format to a new one,
as the change requires new tools, learning how to use the tools and the new format, and, in
the case of an non presentation-oriented format, imagined loss of control over layout issues.
Furthermore, for old content not to be lost, it requires extensive manual work for conversion.
In principle, performing the personalization after the assembly allows to personalize content
not generated by the presentation process itself. These external documents have of course to
follow certain conventions, it is certainly not possible to personalize arbitrary documents. For
instance,HTML offers manifold ways to obtain a paragraph, e.g. adding line breaks before and
after a text block, or including the text within adiv or p tag.
We made the experience that as a first compromise towards completely switching toOMDoc,
authors sometimes prefer adapting their old content manually with respect to some conventions,
e.g., representing a paragraph with thediv tag, and adding a uniformid attribute to them.
In this way, some personalization can be performed on this content, e.g., adding knowledge
indicators.
Yet one has to keep in mind that this approach is only a compromise. It neither offers the full
functionality of personalization nor will it satisfy the author in the long run, especially with
respect to re-usability.

4.4.2 Randomized and Generated Content
Some content can not be cached at all because its text is generated on the fly. We distinguish
between randomized and generated content:
A good example for randomized content are multiple choice exercises. Every time ACTIVE-
MATH presents such an exercise, the order in which the possible choices are presented is ran-
domized. As simple as it is, it hampers students to simply copy the answers from their neigh-
bors.
Generated content is content that is generated from an abstract representation. An example
are exercises involving statistics. Statistic can be applied to a number of areas, ranging from
the probability whether a person falls ill to the probability that some products sells better than
others. But the underlying mathematics remain the same. Therefore, an abstract representation
can specify the basics of the exercise, and the concrete instantiations are generated with respect
to the field of the learner.
These kinds of dynamic content should of course not be cached. Therefore, the assembly pro-
cess has to be able to know whether to take an item from the cache or whether to request it again
from a content-generator (not shown in Figure2). This can be achieved by adding a non-cache
attribute on the elements or by giving the assembly a list of these elements.

4.4.3 Lowering the amount of requests
We also aim at avoiding the load of a document for the sole purpose of performing small,
local updates, for instance, changing the colored bullets in the table of content that indicate
the mastery value of the user for the topics of the page. These updates are performed via
a JavaScript connection to the server. This approach can be generalized to a message-based
communication, making browser componentsagentscommunicating to the components of the
server, thereby offering much more flexibility and reducing the amount of information traveling
between the brower and the server.

9

5 Related Work
A huge quantity of systems in education offer individualization of content, see, for instance,
the recent proceedings of the International Conference on Intelligent Tutoring Systems [3] or
the proceedings of the Conference on Adaptive Hypermedia [1]. Brusilovsky [2] provides a
comprehensive overview on adaptive hypermedia techniques, however the techniques he men-
tions focus on manipulating pre-made pages, for example hiding/showing a paragraph of text,
enabling/disabling hyperlinks, or changing the sequence in which the pages are presented to the
user.
Recent systems that provide the possibility of assembling pages and courses from smallerlearn-
ing objectsdepending on user properties are [4] or [8]. Sadly, they do not provide details re-
garding the technical aspects focused in this article.
A very powerful presentation architecture is the Cocoon Publishing Framework2. It offers
stylesheet processing added withXML -creation and caching at all levels. The Cocoon frame-
work is very flexible, but consequently relatively complicated. Furthermore, it is hard to de-
bug because of its purely stream-based processing (streams being either byte-streams or, most
frequently,XML -parse-tree events). In comparison, our presentation architecture based on an
in-memoryXML -representation provides more expressive accessors and manipulations for the
special case of ourOMDocencoding. This supports authors and developers to detect and resolve
presentation errors.

6 Conclusion and Further Work
We proposed a layered presentation architecture that divides the page generation in several
stages, where each stage adds distinct information. Thereby, more elaborate caching strategies
are possible than in an one-step generation. We think our approach is especially helpful if more
elaborate individualization takes place than simply inserting a user name. In scenarios where
the content presented to the user is composed of parts that are retrieved from a knowledge base,
depending on individual properties, the layered architecture can very well be applied and lead
to noticeable performance increases.

The implementation of the layered presentation architecture is currently underway. We will
then conduct an exhaustive analysis of the performance. In particular we are interested to what
extent performances increases under realistic conditions, i.e., in a course, by transforming the
single elements for themselves and only later composing them to form complete pages com-
pared to composing the complete page and then transforming it.

Furthermore, we will investigate the effects of the different cache positions on speed increase.
Preliminary experimental results show that, in theHTML case, the delivery of a page whose
items are all cached after transformation is at least 100 times faster as it only involves merging
byte-streams. Nevertheless, exact data can only be gained under real world conditions.

The architecture is being implemented within the ACTIVEMATH system. ACTIVEMATH was
developed with modularity and openness in mind so that its components can be easily reused.
It is open source and available free of charge in a non-commercial setting3.

2http://xml.apache.org/cocoon/
3http://www.activemath.org

10

http://xml.apache.org/cocoon/
http://www.activemath.org

References
[1] P. D. Bra, P. Brusilovsky, and R. Conejo, editors. volume 2347 ofLNCS. Springer-Verlag,

2002.

[2] P. Brusilovsky. Adaptive and intelligent technologies for web-based education.Künstliche
Intelligenz, 4:19–25, 1999.

[3] S. Cerri, G. Gouarderes, and F. Paraguacu, editors. volume 2363 ofLNCS. Springer-Verlag,
2002.

[4] O. Conlan, V. Wade, C. Bruen, and M. Gargan. Multi-model, metadata driven approach
to adaptive hypermedia services for personalized elearning. In P. D. Bra, P. Brusilovsky,
and R. Conejo, editors,Proceedings of the second International Conference on Adaptive
Hypermedia and Adaptive Web-Based Systems, volume 2347 ofLNCS, pages 100–111.
Springer-Verlag, 2002.

[5] IEEE Learning Technology Standards Committee. Learning objects metadata, 1999.
Available from http://www.edna.edu.au/edna/aboutedna/metadata/
analysis/LOM.htm , see alsohttp://ltsc.ieee.org/ .

[6] M. Kohlhase.OMDoc: Towards anOPENMATH representation of mathematical documents.
Seki Report SR-00-02, Fachbereich Informatik, Universität des Saarlandes, 2000. See also
http://www.mathweb.org/omdoc .

[7] E. Melis, E. Andres, G. Goguadze, P. Libbrecht, M. Pollet, and C. Ullrich. Activemath:
System description. In J. D. Moore, C. Redfield, and W. L. Johnson, editors,Artificial
Intelligence in Education, pages 580–582, Amsterdam, 2001. IOS Press.

[8] M. Specht, M. Kravcik, R. Klemke, L. Pesin, and R. Hüttenhain. Adaptive learning envi-
ronment for teaching and learning in WINDS. In P. D. Bra, P. Brusilovsky, and R. Conejo,
editors,Proceedings of the second International Conference on Adaptive Hypermedia and
Adaptive Web-Based Systems, volume 2347 ofLNCS, pages 572–575. Springer-Verlag,
2002.

[9] The ActiveMath Group. Knowledge representation and management in ACTIVEMATH. To
appear in the Proceedings of MKM’01 in Annals of Mathematics and Artificial Intelligence,
2003.

11

http://www.edna.edu.au/edna/aboutedna/metadata/analysis/LOM.htm
http://www.edna.edu.au/edna/aboutedna/metadata/analysis/LOM.htm
http://ltsc.ieee.org/
http://www.mathweb.org/omdoc

	Motivation
	Individualized Web Pages
	ActiveMath, a Web-Based Learning Environment
	ActiveMath's Knowledge Representation
	Current Generation and Presentation Process
	Advantages of Dynamic and Individualized Generation of Web Pages
	Problems Regarding Presentation

	Layered Presentation Architecture
	Processed Data
	Splitting the Presentation Process
	An Example

	Caching Possibilities
	Additional Considerations
	External Documents
	Randomized and Generated Content
	Lowering the amount of requests

	Related Work
	Conclusion and Further Work

