
A Flexible and Efficient Presentation-Architecture for Adaptive Hypermedia:
Description and Technical Evaluation∗

Carsten Ullrich, Paul Libbrecht, Stefan Winterstein, Martin Mühlenbrock
German Research Center for Artificial Intelligence

Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany
dev@activemath.org

Abstract

Means of achieving personalization in the Web are Adap-
tive Hypermedia techniques and the flexible composition of
learning content from individual learning objects. If the ob-
jects are represented in a format different from the presen-
tation format (e.g. as XML as opposed to HTML), a po-
tentially expensive transformation process is required. Fur-
thermore, caching becomes impractical depending on the
degree of personalization, as the dynamic information is
available at presentation time only and varies for each user.
In this paper we present a flexible and efficient presenta-
tion pipeline based on a Model-View-Controller architec-
ture, which overcomes performance problems and couples
caching and personalization. It transforms single learn-
ing objects and uses a view-layer for adaptive presentation
and navigation support that provides additional advantages
such as incremental rendering and the easy adaption to dif-
ferent layout styles. Both theoretical and simulation results
prove the efficency of this architecture.

1. Motivation
To detect and address a learner’s needs is key to success-
ful teaching. In Web-based systems, the responsiveness
to the individual context is called Adaptive Hypermedia
(AH). Various techniques for achieving AH exist. In [5],
Brusilovsky coined the terms “adaptive presentation” (e.g.,
text fragments on a fixed page are hidden or displayed),
“adaptive navigation support”, (e.g., annotating links with
information about the knowledge state of the user), and
“adaptive content selection” (a system selects and sorts con-
tent items). Several studies (e.g., [4, 1]) investigate the ef-
fects of AH on learning. Although the experimental setup of
some of the studies might not completely stand up to closer
examination, a general tendency that AH is benefitial for
learning can be deduced.

∗This publication was generated in the LeActiveMath project, funded
under FP6, Cntr. 507826. The authors are solely responsible for its content.

Recently, the development of AH techniques has been
influenced by the Semantic Web. As a result, the impor-
tance of encoding the learning material in a more abstract
representation thanHTML , for instanceXML , has been rec-
ognized. The advantages are numerous. First of all, the ren-
dering of different output formats, e.g.,HTML and printer-
friendly PDF becomes easily possible. What’s more, by re-
moving presentational information the reuse of learning ma-
terial is eased, a factor that substantially reduces the total
cost of authoring content. By referring to a DTD or XML-
Schema, the learning material can be structured semanti-
cally. OMDoc([7]) for instance, defines a knowledge repre-
sentation targeted at representing mathematical documents
at the text fragment level, thus providing a way to mark ar-
eas as an example or a definition. In this way, authors can
exchange learning material at a fine-grained level and more-
over intelligent learning systems can automatically generate
courses from these learning material.

However, representing content in a format different from
the output format requires a transformation process at pre-
sentation time, such asXSLT for XML . Depending on the
amount of AH techniques involved, the transformation pro-
cess requires substantial resources, both regarding CPU
power and PC memory.

ACTIVEMATH ([8]) for instance, a dynamic and adap-
tive web-based learning environment, composes individual
learning objects to form a course distinctively adapted with
respect to the learner’s goals, preferences and capabilities.
Each page can consist of various learning material in vary-
ing order, which can be annotated differently. Figure 1
shows an example of an exercise session. Clearly visible
is a text fragment, in this case an exercise.

In principle, this dynamic and adaptive composition of
a course requires a complete transformation of the knowl-
edge representation to the output format each time a learner
accesses a page. In fact, the first version of ACTIVEMATH

reiterated the complete presentation cycle at every request.
At first glance, this transformation process cannot be op-

timized. Caching a complete page would not help: Because

Figure 1. Screenshot of a page in ActiveMath.

of the dynamic features it is unlikely that the very same page
will be shown to different users. Caching single fragments
is not a solution either, as the single fragments are annotated
using individual information available only at request time.

In this paper, we describe a presentation pipeline based
on a Model-View-Controller architecture that overcomes
these problems (Section 2). It transforms single fragments
and uses the view-layer for realizing AH techniques. The
view layer provides additional advantages such as incre-
mental rendering and the easy adaption for different layouts.
Both theoretical and simulation results prove the efficiency
of this architecture (Section 3).

2. Description of the Architecture
A Model-View-Controller (MVC) architecture serves as the
basis for our web application. It separates application logic
(controller) from application data (model) and the presenta-
tion of that data (view-layer). It is well established for Java
web applications, where servlets act as controllers, Java
data objects form the model, and views are usually imple-
mented by a dedicated template language.

The web application part of ACTIVEMATH is based on
two frameworks: MAVERICK and VELOCITY. MAVERICK

(http://mav.sourceforge.net/) is a minimalist MVC frame-
work for web publishing using Java and J2EE, focusing
solely on MVC logic. It provides a wiring between URLs,
Java controller classes and view templates. VELOCITY

(http://jakarta.apache.org/velocity/) is a high-performance
Java-based template engine, which provides a clean way to
implement the view-layer and incorporate dynamic content
in text based templates such asHTML pages. It provides
a well focused template language with a powerful nested
variable substitution and some basic control logic.

2.1. The Presentation Pipeline
We developed a 2-stage approach for presentation that uses
XSLT transformations combined with a template engine.
Basically, the presentation pipeline, as shown in Figure 2
can be divided into two stages. The first stage deals with
individual content fragments or items, written inXML and
stored in a knowledge base. At this stage, items do not de-
pend on the user who is to view them. They hold unique
IDs and can be handled independently. It is only in the sec-
ond stage that items are combined to user-specific pages and
enriched with dynamic data for this specific page request.

In Stage 1, the first part of the presentation pipeline is
comprised of the stepsfetching, pre-processing, andtrans-
formation. The fetching step collects requested content
from the knowledge base. The output of this step areXML

fragments. Duringpre-processingserver-specific informa-
tion is inserted into theXML content. Then thetransfor-
mationperforms the conversion into the output format by
applying anXSLT stylesheet to the document. The output of
the last step are text-based content fragments in, e.g.,HTML

or LATEX. To summarize, Stage 1 deliversXSLT-transformed
content fragments in the required output format. In Stage 2,
these fragments are composed into a complete page and
enriched with dynamic data for this specific page request,
thereby allowing for AH techniques.

Stage 2 performs the stepsassembly, personalizationand
optionally compilation. The assemblyjoins the fragments
together to form the requested pages. The fragments in the
desired output format are integrated into a page template,
which is fetched from an external source. During theper-
sonalization, request-dependent information is used to add
personalized data to the document, such as user informa-
tion, knowledge indicators. If necessary, thecompilation
applies further processing to convert the generated textual
content presentation into a binary format such asPDF.

2.2. Example
The following simplified example illustrates the steps of the
pipeline. Say user Anton requests anHTML page that con-
tains one item only, “Definition 1” with the IDdef1.

In the first step, this content isfetchedfrom the knowl-
edge base, which returns anOMDocXML fragment:
<definition id="def1">

Definition 1 with a reference to
<ref xref="def2">Definition 2.</ref>

</definition>

The pre-processingstep replaces the IDs of the items.
Here, it adds the name of the knowledge base:
<definition id="kb1://def1">

Definition 1 with a reference to
<ref xref="kb1://def2">Definition 2.</ref>

</definition>

Then the fragment istransformedto HTML by using
XSLT. As a result, the item has been wrapped with anHTML
div tag, and the reference to Definition 2 has been replaced
by $link.dict(). This is a variable reference for the view
layer, and will later result in a call to a special Java helper
bean that will generate the desiredHTML code for this link:

Figure 2. The presentation pipeline.

<div class="definition" id="kb1://def1">
Definition 1 with a reference to

$link.dict("Definition 2", "kb1://def2").
</div>

In theassemblystep, the items are put together to form
a completeHTML page. Here, we only have a single item,
which is embedded in anHTML template:
<html> <!-- page template -->

<head/>
<body>

This page is generated for $user.Name.
<!-- begin item -->
<div class="definition" id="kb1://def1">

Definition 1 with a reference to
$link.dict("Definition 2", "kb1://def2").

</div>
<!-- end item -->

</body>
</html>

In the final step, the document is interpreted by VELOC-
ITY . All variable references are resolved and replaced by
the correspoding text, and the document is sent to the user’s
browser:
<html> <!-- page template -->

<head/>
<body>

This page is generated for Anton.
<!-- begin item -->
<div class="definition" id="kb1://def1">

Definition 1 with a reference to

<!-- knowledge indicator -->

Definition 2

.
</div>
<!-- end item -->

</body>
</html>

2.3. The View-Layer
As we saw in the example, the VELOCITY template engine
plays a central role in Stage 2. Its major function is to re-
place variable references with dynamic data only available
at request time. This data and the names under which it
is available to the view-layer of the MVC architecture as
VELOCITY a template is defined in our view layer inter-
face specification. This document describes what data ob-
jects (“beans”) can be accessed in each view and the prop-
erties they expose. Therefore, ourXSLT stylesheets can out-
put “intermediate data” in the form of variable references,
which will later be replaced by actual dynamic data. With-
out the use of a template engine, dynamic data would have
to be available to theXSLT stylesheet at transformation time.
Among other problems (such as making theXSLT stylesheet
very much dependent of theHTML layout), this would make

the caching of transformed content impractical, since trans-
formed content would be different from user to user.

2.4. Incremental Rendering
In order to improve the perceived performance of our ap-
plication, we chose an incremental rendering approach for
ACTIVEMATH. Instead of sending all content through the
pipeline before displaying the final result to the user, the
presentation pipeline is driven from the view layer, i.e. from
the VELOCITY template. The controller logic only collects
the IDs of the items to display on a page, and – along with
all other request-dependent data – passes it on to the ap-
propriate VELOCITY template. This template has access to
a special helper bean which provides a high-level function
to trigger the presentation pipeline for a single item. The
helper bean will take care of fetching an item, transforming
it and rendering it directly to the request’s output stream.
This approach minimizes the time until the user sees the
start of a new page, along with the first content element.
While still rendering the content below, the user can already
start reading the top of the page, which makes page render-
ing appear much faster, even if the server is not generating
the page faster than it did before.

2.5. Caching
Caching potentially improves the performance as expensive
fetching, transformation or other processes are only com-
puted once. Figure 2 indicates three points in the presenta-
tion pipeline at which caching can take place. First, caching
untransformed content afterfetchingit from the knowledge
bases makes sense if the databases can be distributed any-
where in the web and for those modules (such as a glos-
sary) that use only the content meta information, such as
the title of an item. Secondly, items can be cached after the
transformation. As applyingXSLT-transformations is very
expensive and requires a lot of resources, this cache poten-
tially yields the best improvements. The cache key is the
triple (ID, format, language).

A third option is to cache the results of thecompilation,
for instance the PDF version of a large page or book. Here,
the generated file can be stored in a file-based cache on the
server to avoid the expensive re-compilation operation.

2.6. Redesigning the User-Interface
User-interface elements (e.g., menu bars) are represented in
the view layer. As a result, changing the appearance of the

Figure 3. A different user-interface.

user-interface only requires changing the VELOCITY tem-
plates. They are written in a very easy to learn syntax and
contain mostly presentation code (HTML). Hence, adapting
ACTIVEMATH ’s current university level interface to suit the
requirements of, for instance, a school is almost the work of
anHTML designer; and migrating theHTML code from pro-
totypes to the templates is a small task. Moreover, even
altering the pedagogical approach underlying the learning
environment is relatively easy. We recently adapted AC-
TIVEMATH to follow an open learning approach. The cur-
rent central metaphor of ACTIVEMATH is that of a book in
which a learner navigates. In contrast, the open approach
sees the learner as being motivated by daily life problems,
searching on his own for the basic knowledge required to
solve the problems. Despite the pedagogical differences,
the presentation architecture can be re-used entirely. It
was an easy task to adapt the presentation architecture and
within four person-months, the design (mostly fromHTML

prototypes) and functionalities were ready. Figure 3 shows
a screenshot of the adapted user-interface.

3. Evaluation

3.1. Estimation of performance gain
By comparing the costs of generating output in the new and
old architecture, we want to get a rough estimation of the
performance gain due to the caching. Therefore, costs units
are assigned to the different stages of the output generation:
The learner’s request to the web server costs one unit. Since
only HTML output is considered here, the compilation stage
has no cost. The personalization stage amounts to 5 units.
The following stages assembly, transformation, and prepro-
cessing (including fetching) are assigned to 2, 30, and 10

Figure 4. The averaged latency rates.

units, respectively. Obviously, the transformation stage has
the highest cost.

In the old architecture without caching, each stage has to
be traversed to generate a page, i.e. for each page the cost
of its generation amounts to 48 units (1 + 5 + 2 + 30 + 10).
However, in the new architecture with caching, in aver-
age only 3 of 10 user requests require personalization and
assembly (i.e. 7 of 10 user requests are referred to the
cache), and only 3 of 100 requests need extra transforma-
tion and preprocessing. As we have seen above, the trans-
formation stage is especially costly, followed by the pre-
processing stage. Therefore, a considerable reduction of
cost can be expected from the new architecture, and indeed,
the average cost for a page request sums up to 4.3 units
(1 + 0.3 ∗ (5 + 2) + 0.03 ∗ (30 + 10)). This means that
the cost reduction is about one tenth! In the following sec-
tion we provide evidence for this theoretical analysis from
experiments with simulated page requests.

3.2. Simulation Results
In order to get real-use data, we developed a stress tool for
the ACTIVEMATH web-server. This tool simulates concur-
rent access to the server by automatically generating page
requests. An adjustable number of virtual users “browses”
through ACTIVEMATH by following menus or navigating
back and forth through the content. The number of requests
and the maximum time span between two request is config-
urable. The stress tool collects and calculates the average
connection, throughputs, and latency rates.

Figure 4 contains the latency rates (the averaged value
of seconds that passed until a request was answered by the
server) of 4, 8, 16, and 32 users, with each user following
a random sequence of 20 requests. ACTIVEMATH and the
knowledge base run on the same machine to minimize net-

work delays. The tests were performed on a 900 Mhz AMD
Athlon CPU, 512 MB RAM, running Linux. We chose a
standard work-place computer instead of a high-tech server
in order to get a realistic idea of the different performances.
Using a server, the results may have been less obvious.

Parts of the results were quite suprising. For instance,
we did not expect the old architecture (OA) to outperform
the new architecture without chaching (NA-C). One possi-
bile cause may be that theXSLT stylesheets were not opti-
mized in view of the new architecture; actually both used
the same stylesheets. As a more pleasent suprise, the data
very clearly shows the effect of fragment caching. The
response times of NA-C become unacceptable as soon as
more than 16 users are accessing the server simultaneously.
With fragment caching (NA+C), the latency grows much
slower. Although the number of users raises from 4 to 32,
the response time stays below 4 seconds. Not accounted
for in this figure are the effects of the incremental render-
ing. Almost instantly after having sent a request, the user
will see the first item of a page in his browser, a substantial
improvement of the perceived performance.

Compared to the performance of sites such as Google,
these results may seem somewhat ludicrous. However, one
should keep in mind the technical side, i.e., the limited
power of our test server, and even more importantly, the
setting for which ACTIVEMATH was designed. ACTIVE-
MATH is to provide individual learning support in the con-
text of lectures and classes. In these cases, the number of
users is limited to at most a hundred, and not all users will
access the system simultaneously. Therefore, the new pre-
sentation architecture of ACTIVEMATH seems to be reason-
ably efficient for these situations.

4. Related Work and Conclusion
A large number of systems in education offers individual-
ization of content (e.g., [6, 9]). Unfortunately, we do not
know of any publication that provides a technical descrip-
tion on a level of detail as provided here.

Cocoon (http://cocoon.apache.org/) is a web develop-
ment framework, which is based heavily onXML andXML

transformation pipelines. In contrast to the Cocoon devel-
opers, we believe thatXML documents are not an ideal basis
for application objects. For example, in ACTIVEMATH it is
much more efficient to represent a item in a POJO (plain
old Java object) than holding this information in a JDOM
XML object (Java Document Object Model). In our case, the
XML object increases memory requirements by a factor of 5
to 10. In addition, anXML object typically only provides a
tree view of an object, which is not always appropriate for
the application, and forces the application to cope with an
external storage structure. Besides, a POJO easily provides
type-safe access to data elements, which is not available for
XML objects and a DOM based API. Therefore, we try to

restrict usage ofXML to the edges of our application (data
and output) wherever possible.

To summarize, we propose a layered presentation archi-
tecture that efficiently realizes AH-techniques and can be
applied in all settings whereXML -items serve as the ba-
sis of personalization. With our 2-stage, hybridXSLT and
template engine approach, we obtain the following ben-
efits: Firstly, XSLT-transformed items are independent of
user data. This allows for effective caching, since content
is personalized only late in the presentation pipeline. Sec-
ondly, XSLT stylesheets are not dependent of the view lay-
out. Instead, they focus on transforming content into dif-
ferent formats. Thirdly, the view layout (e.g. inHTML) is
only contained in template files, where it is easily change-
able even by many users including non-programmers. Even
more, the whole look&feel of our application can be ex-
changed by just altering the set of templates.

References
[1] N. Bajraktarevic, W. Hall, and P. Fullick. Incorporating learn-

ing styles in hypermedia environment: Empirical evaluation.
In Bra [2].

[2] P. De Bra, editor. Proceedings of AH2003: Workshop
on Adaptive Hypermedia and Adaptive Web-Based Systems,
2003.

[3] P. De Bra, P. Brusilovsky, and R. Conejo, editors.Proceed-
ings of the Second International Conference on Adaptive Hy-
permedia and Adaptive Web-Based Systems, volume 2347 of
LNCS. Springer-Verlag, 2002.

[4] P. Brusilovsky and J. Eklund. A study of user model based
link annotation in educational hypermedia.Journal of Uni-
versal Computer Sciencej-jucs, 4(4):429–448, April 1998.

[5] P. Brusilovsky and M. T. Maybury. From adaptive hypermedia
to the adaptive web.Communications of the ACM, 45(5):30–
33, 2002.

[6] O. Conlan, V. Wade, C. Bruen, and M. Gargan. Multi-model,
metadata driven approach to adaptive hypermedia services for
personalized elearning. In Bra et al. [3], pages 100–111.

[7] Michael Kohlhase.OMDoc: Towards an internet standard for
mathematical knowledge. In Eugenio Roanes Lozano, editor,
Proceedings of AISC’2000, LNAI. Springer Verlag, 2001.

[8] E. Melis, E. Andr̀es, J. B̈udenbender, A. Frischauf,
G. Goguadze, P. Libbrecht, M. Pollet, and C. Ullrich. Ac-
tivemath: A generic and adaptive web-based learning envi-
ronment. International Journal of Artificial Intelligence in
Education, 12(4):385–407, 2001.

[9] M. Specht, M. Kravcik, R. Klemke, L. Pesin, and
R. Hüttenhain. Adaptive learning environment for teaching
and learning in WINDS. In Bra et al. [3], pages 572–575.

