
Author Intent:
Eliminating Ambiguity in MathML

 David Carlisle1[0009-0005-3048-4899] Paul Libbrecht2[0000-0003-3176-3361]

 Moritz Schubotz3[0000-0001-7141-4997] Neil Soiffer4[0000-0001-8521-1701]

1Numerical Algorithms Group Ltd, Oxford, UK david.carlisle@nag.co.uk
2IU International University of Applied Science, Erfurt, DE paul.libbrecht@iu.org

3FIZ Karlsruhe, Berlin, DE moritz.schubotz@fiz-karlsruhe.de
4Talking Cat Software Inc, Portland, Oregon, USA soiffer@alum.mit.edu

Abstract
MathML has been successful in improving the accessibility of mathemati-
cal notation on the web. All major screen readers support MathML to gen-
erate speech, allow navigation of the math, and generate braille. A trou-
blesome area remains: handling ambiguous notations such as |x|. While
it is possible to speak this syntactically, anecdotal evidence indicates most
people prefer semantic speech such as “absolute value of x” or “determi-
nant of x” instead of “vertical bar x vertical bar” when first hearing an
expression. Several heuristics to infer semantics have improved speech, but
ultimately, the author is the one who definitively knows how an expression
is meant to be spoken. The W3C Math Working Group is in the process of
allowing authors to convey their intent in MathML markup via an intent
attribute. This paper describes that work.
Keywords: Visual Impairment· Assistive Technology· Speech· STEM
· Mathematics · Formulas · MathML

1 Background
The W3C first recommended MathML as the method for including mathematical
expressions in web documents in 1998. Browser adoption was slow, but by
early 2023, all the major browsers supported MathML. Support for MathML
by screen readers came along many years before that milestone. The quality
of the speech and the number of languages supported (both in speech and in
braille) varies. Some math-specific Assistive Technology (AT) software1 such as

1The focus of this paper is on mathematical expressions. Accessibility of expressions in-
volves speech, navigation, and braille. We do not discuss other important accessibility topics
such as plots/graphs and diagrams.

1

 x T

x^{T}

 x ′

x'

 A B ̅

$\overline {AB}$

 (a , b)

(a,b)

 x | y

$x\vert y$

 | x |

$\vert x\vert $

 | x |

$\left \vert x\right \vert $

$\overline {AB}$

$\left \vert x\right \vert $

$\overline {AB}$

 | M |

$\left \vert M\right \vert $

 x 2

x^{2}

 x ̅

$\overline {x}$

 ×

$\times $

(a,b)

 F : ℝ n ⟶ ℝ n

$F:{\mathbb R}^n\longrightarrow {\mathbb R}^n$

 C 1

C^{1}

 F

F

C^{1}

x^{T}

 (x 2 + y 2) 2

$\left (x^{2}+y^{2}\right)^{2}$

 x 2 | 3

$\left . x^{2} \right |_{3}$

 …

$\ldots $

$\times $

$\times $

$x\vert y$

xT “x to the T” or “x transpose”

x′ “x prime” or “first derivative of x”

AB “line segment A B” or “complex conjugate of A times B”

(a, b) “point a comma b”, “open interval from a to b” or “gcd of a and b”

x|y “x divides y”, “x such that y” or “x given y”

Figure 1: Examples of ambiguous notations

SRE [3], MathPlayer [13], and MathCAT [14] put significant effort into inferring
the semantics so that superscripts are not always powers and pairs of vertical
bars do not always mean absolute value. Some examples of ambiguity are given
in Figure 1.

One way to avoid ambiguity is to speak the expression syntactically. For
example, |x| can be spoken as “vertical bar x vertical bar” and AB can be
spoken as “start A B end grouping with line above.” To our knowledge, there
have not been any studies that compare listener preference for syntactic speech
vs. semantic speech. It seems likely that semantic speech is preferable because
syntactic speech is usually not what people are used to hearing and is also often
longer. Comparing the speech for |x| and AB, syntactic speech requires 9 and
10 syllables, respectively, versus 6 and 5 syllables for semantic speech.

The most common approach to generate semantic speech is to infer what the
author means by looking at the notation and its arguments. For example, to
distinguish between absolute value and determinant, a single capital letter or
a square table as the argument between verticals bars (e.g., |M |) would likely
be a determinant, not an absolute value [11]. To varying degrees, AT looks at
the arguments to generate speech for expressions like x2 (“x squared”). Math-
Player [13] goes further than most; it has over 800 patterns to improve speech.
About 200 of these patterns are only active if the user specifies a subject area
(this number includes chemistry speech rules). For example, if the user chooses
the subject area “probability & statistics”, then x is read as “mean of x” in-
stead of “x bar”. If “calculus” is chosen, × is read as “cross product” rather
than “times”. This helps resolve ambiguity at the cost of having the user inform
MathPlayer about the content that is being read. MathPlayer’s use of sub-
ject area was a motivating factor for the W3C Math Working Group to explore
adding “intent”. However, it is not rare to see texts that use the same notation
for different concepts, e.g. (a, b) for both the open-interval and the coordinates
of a point.

Another approach is to use the surrounding textual context to understand
the math content [12]. In 2017, we presented a method that extracts definitions
for identifiers with an F1 score of 36%. Language models are rapidly improving.
In 2023, Bansal, et. al. [1] described a matching learning approach to recognize
definitions of symbols used in an expression by looking at the immediate sur-

2

rounding context. For example, their work deduces from “Let F : Rn −→ Rn

be a C1-vector field” that F is a C1 vector field. The paper from 2022 lists an
F1 score of 75% in their data set for finding a definition. However, no numbers
indicate how often this is useful for improving speech, which is the final goal of
their work.

For large expressions, a number of people have advocated that an overview
(or outline or summary) of an expression be given. AsTeR [9] automatically
elided subexpressions, but no study was done on its effectiveness. As part of the
MathGenie project, a study [6] showed that providing an outline slowed solution
time. Nonetheless, outlines were included in MathGenie because the authors
felt it would be useful. MathPlayer provides an option to describe an expression
rather than read it. In a ClearSpeak navigation study [5] using MathPlayer, user
feedback was that outlines were not very useful. The study authors feel part of
this is because the implementation was crude relative to other features. As with
reading, ambiguity can arise when summarizing expressions.

In addition to speech and braille, the ability to review a portion of an ex-
pression is important in expressions that are not simple. Most AT allows for
navigation of expressions via a tree-based model, not unlike the MathML rep-
resentation of the expression. In [7], the authors use a touch/tactile-based ap-
proach to navigation for people who are blind but have some small amount of
residual sight (enough to resolve light/dark). This allows the users to take ad-
vantage of the physical relationships in mathematical notations (e.g., numerators
are above denominators) that sighted users take advantage of. They compare
their prototype for an iPhone with a tactile grid overlay to JAWS and find sta-
tistically significant benefits for touch including less frustration/effort and faster
relocation of items. While spatial navigation is more user-friendly, the problem
of ambiguous notations is still present.

In [8], the authors note that the use of audio for reading maths textbooks is
on the rise, sometimes as an alternative to braille. They point out that the right
to learn to read (braille) should be supported. The paper stresses the lack of
high-quality studies on the topic of mathematics learning for visually impaired.

While previous work has improved the quality of the generated speech, heuris-
tics can never be perfect and are ultimately guesses as to what the author meant.
Furthermore, even when AT knows what the author means, that doesn’t neces-
sarily indicate how the author wants a notation pronounced. For example, 1/3
can be read as “one divided by three” or “one third” depending on what is being
learned. The work presented here aims to support AT to generate better speech
and, in some cases, better braille from MathML expressions.2

2Most braille codes are based on just the basic structure of the expression (subscripts,
superscripts, etc.). They are based not on semantic meaning (index, power, etc.). There are
a few exceptions to this, such as needing to know whether “:” is meant to convey a ratio or
something else in Nemeth code. “Intent” can also help with braille generation in those special
cases.

3

 <mrow intent="absolute-value($contents)">
 <mo>|</mo>
 <mi arg="contents">x</mi>
 <mo>|</mo>
 </mrow>

Figure 2: Simple intent example

2 Author Intent in MathML 4
The above approaches significantly improve the understandability of the gen-
erated speech. However, they are still heuristics and thus sometimes wrong.
To complement these efforts, the W3C’s Math Working Group is updating the
MathML standard to allow specification of how an expression should be spoken
[2]. Authors can use this standard to correct heuristics, or AI researchers can
evaluate the performance of their heuristics. Following the idea of correcting
heuristics, the W3C’s Math Working Group decided that an approach that uses
progressive enhancement is most appropriate: do not require changes; instead,
allow for those notations where an author wants to make sure of unambiguity.
As a rule of thumb, an author might want to enhance notations in cases when
she would explain it in a classroom or at presentation, e.g., when she would write
xT she might say “T means transposed”.

2.1 Author Intent Basics
The approach the Math WG settled on is to allow intent and arg attributes
on all MathML elements. The attribute’s value has a simple, functional syntax.
This syntax allows both the function head (the function name along with its
properties) and its arguments to be literals, references to descendant elements,
or another function. Literals can be numbers or names. See section 5.1 of [2] for
a full grammar. A simple example for the “absolute-value” concept is shown in
Figure 2.

References are prefixed with $ and some descendant of the referencing el-
ement should have a corresponding arg attribute value. In figure 2, this is
demonstrated with the reference “contents”. See 2.2 for details.

By default, “intent” values should be spoken as functions are spoken, so
the expression in figure 2 might be spoken as “absolute value of x”, but AT is
free to use other functional ways of speaking the “intent”, such as a terse form
(“absolute value x”) or a verbose form (“the absolute value of x”). Properties
(see 2.3) allow for other ways of speaking an “intent”.

In parallel with the MathML 4 recommendation, the working group is fleshing
out a core list of “intent” concepts and “intent” properties with proposed speech
hints.3 This list is a reference for notations/speech that AT implementations

3Current working drafts are linked from https://w3c.github.io/mathml-docs/ .

4

https://w3c.github.io/mathml-docs/

should support. The core list is intended to cover most mathematics taught
up to the university level. The list includes suggested speech in a few different
languages. As a complement, an open list of “intent” concepts and properties is
maintained; new notations are constantly created so the open list will never be
complete. The open list serves both as a place where people can check to see if
an “intent” concept has already been thought about and as a source of future
additions to the core list. AT is free to implement any concepts or properties in
the open lists.

2.2 Intent Concepts
The function name in an “intent” is referred to as the concept name in MathML 4.
If the AT knows nothing about the concept name, it should be spoken as written.
However, the working group’s “core” list provides names for which AT should
be aware of and for which it should provide translations for the languages it
supports. Some of these concepts, such as “fraction” have many ways they are
spoken depending on the arguments (e.g., “one third”, “one over x”, “one over
x all over two over x”, “meters per second”). For someone who is blind, some of
these speech patterns may include start/end words or sounds to make it clear
where the fraction starts and ends; for others, these extra words or sounds may
hinder comprehension. Authors rarely know their readers’ needs, so MathML 4
delegates the exact speech for core concepts to AT. If an author wants to force
specific words to be used, a concept name can start with an underscore; no core
names start with an underscore.

Concept names are not always a name; they can also be a reference. A
reference (either the concept name or an argument) can be any child with an
arg attribute. References start with a $ character. The reference does not
need to be unique in the document. This allows generating software to reuse
templates. The algorithm for finding a reference is to do a depth-first search of
the children stopping when a matching arg attribute value is found. If the arg
attribute value matches the reference, the search is done. Otherwise, the element
is treated as a leaf and the search continues in the parent. Figure 3 shows an
example with nested “intents” for a nested power

(︁
x2 + y2

)︁2 that might come
from software that uses a template for powers. If an intent has illegal syntax
or references nonexistent arg attributes, the intent should be ignored by AT.

2.3 Intent Properties
By default, concept names are spoken in a functional manner, but this is not
always appropriate. For example, x2

⃓⃓
3
 might have the concept name “evaluated-

at” and is typically spoken as “x squared evaluated at 3” not as “evaluated-at of x
squared and 3”. To solve this problem, “intent” can be given a “fixity” property.
The allowed values are “function”, “silent”, “prefix”, “infix”, and “postfix”.4

4The Math WG is still considering adding other values such as “matchfix” to allow for
other speech patterns.

5

 <msup intent="power($base,$n)">
 <mrow arg="base">
 <mo>(</mo>
 <msup intent="power($base,$n)">
 <mi arg="base">x</mi><mn arg="n">2</mn>
 </msup>
 <mo>+</mo>
 <msup intent="power($base,$n)">
 <mi arg="base">y</mi><mn arg="n">2</mn>
 </msup>
 <mo>)</mo>
 </mrow>
 <mn arg="n">2</mn>
 </msup>

Figure 3: Example of nested arguments in “intent”

Properties begin with “:” and there is no limit to the number of properties that
can be attached to a concept name. For “evaluated-at”, we might have

<mrow intent="evaluated-at:infix($expr, $value)"> . . . </mrow>
Early on, the Math WG realized that some notations that make use of the

mtable element are complicated to specify using just concept names. For exam-
ple, each equation in a system of equations is often divided up into columns to
force alignment. To bring each equation back together, it would be necessary
to list all the entries in each row as part of an “equation” concept. To remedy
this, table properties tell AT how to speak the children. For a system of equa-
tions, the table can be marked with the “intent” value “system-of-equations”
and AT should ignore the columns and just speak the table as (for example)
“2 equations, equation 1 …, equation 2, …end equations”. The current list of
core table properties is “matrix”, “piecewise”, “system-of-equations”, “lines”,
and “continued-row”.

Other properties are used to avoid having generating software know lots of
related names. These include properties for chemical elements, units, and roman
numerals. There is also a “chemical-equation” property that notifies AT that
chemical notation is being used so subscript, superscripts and some operators
are spoken appropriately (e.g., “=” is a double bond, not “equals”).

2.4 Intent and Content MathML
In MathML, two families of elements are defined: Presentation MathML en-
codes how expressions are set out typographically with such typical features as
subscripts/superscripts, fractions, or bracket-pairs. Content MathML encodes
how expressions are understood or interpreted with typical features as function
applications, quantifiers, or externally documented symbols.

6

MathML expressions, i.e., semantics elements, thus can have two trees: a con-
tent tree and/or a presentation tree. Linking between content and presentation
elements can be done with references or nested semantics elements. Content
MathML is made available by and for computing engines. Some translations
between presentation and content (with many assumptions) exist with limited
scope (e.g., for simple equation expressions). While there may be an interest in
finding on the web expressions with content MathML (e.g., to allow readers to
perform computations), they are much less frequent than presentation MathML.

A few experiments led by members of the W3C Math Working Group have
shown that content MathML can be used to generate a better accessible presen-
tation of mathematical formulas if the semantic is available. However, the fact
that content MathML is less widespread and sometimes less able to encode all
mathematical discourse (without adding many symbols) has pushed the W3C
Math group to propose a structure that is closer to the speech and that applies
to expressions which are directly made in presentation MathML.

3 Evaluating the Success of Intent
While “intent” is aimed at improving speech for end users, the main target for
“intent” are authors of documents that contain MathML. The reason tests for
end users are not a focus is because “intent” should only improve the accessibility
of math and never make it worse: “intent” gives AT the ability to know the
author’s intention of how the notation should be spoken as opposed to having
to guess the best way to speak the notation. AT has the choice to make use of
this information or ignore it (e.g., to produce a syntactic reading rather than a
semantic one). Therefore, the way to measure the success of “intent” is two-fold:

1. Are software developers that generate or consume MathML generating or
consuming “intent” or planning to generate or consume “intent”?

2. For the authoring software that generates “intent”, do users make use of
facilities provided so the software can generate “intent”?

It is very early to evaluate either of these criteria given that the MathML 4 rec-
ommendation has not even moved to a Candidate Recommendation, let alone an
actual recommendation. For the first question, there are definite signs of success
as both MathML generators and AT that consumes “intent” have prototypes.

On the generating side, all of the prototype authoring tools that have been
developed are text-based and have some resemblance to TEX. In general, the
authoring tools use macros or special syntax such as “\abs” and ‘\det” to pass
along the author’s intent when there is ambiguity. Discussions have also included
the use of optional macro arguments to pass along intent information. For ex-
ample: \times[intent=cross-product] would produce the following MathML:
<mo intent="cross-product">×</mo>

Three prototypes have been developed so far:

7

WikiTexVC: [15] has the option to add valid “intent” syntax with a pseudo
TEX macro to add “intent” to the MathML produced by Wikipedia, and
other projects using MediaWiki.

UnicodeMath: [10] adds keywords that are Unicode characters when needed to
resolve ambiguity and uses those to generate intents. For example, “(a)x”
uses the Unicode code point “(a)” (U+249C) to indicate that what follows
is the absolute value of x. This is used in speech generation.

SpaceMath: [4] a superset of LATEX (both text and math) and AsciiMath that
includes keywords and macros to generate intents. It will likely become an
option for PreTeXt authors.

No WYSIWYG editors that make use of “intent” have been developed yet,
but ideas on how they might do this involve the use of specialized templates such
as one for binomial that would generate an appropriate “intent” even if using
the MathML-code as that of a 2d-vector. Another option is to allow users to
select a symbol or expression and provide a menu of options for that symbol or
expression. For example, selecting “×” might pop up a menu with the options:
“times”, “cartesian-product”, “cross-product”, “direct-product”, and “custom…”.

On the consuming side, both UnicodeMath and MathCAT implement “in-
tent”. Support for “intent” is included in the release version of MathCAT that
is used in NVDA and JAWS and several other ATs. To generate speech, Math-
CAT first produces an intent tree from MathML. This is trivial if “intent” is
given. If there is no intent attribute, then MathCAT tries to infer the intent
using heuristics. The “intent” tree is then used to generate speech in various
languages and in different styles of speech. The Math Working Group created
a document with many examples comparing MathCAT’s speech with and with-
out “intents”. Among the lessons learned from this exercise was that “intent”
properties for tables such as those used for aligned systems of equations greatly
simplified MathML generation without complicating the implementation.

At this point in time, we lack information as to users’ willingness to use
features that allow generation of “intent”. This is because the number of users
of these prototypes is small and mostly includes the software authors and their
colleagues. However, all have reported that generating “intent” is relatively
straightforward. One of the PreTeXt implementers reported that authors are
generally willing to improve the accessibility of their books if it is not much of a
burden [D. Farmer, personal communication, 4 April, 2024]. As with many ac-
cessibility features (e.g., using headings in documents rather than just changing
the font), getting users to use styles/keywords/macros likely requires education
as to their benefits. All the prototypes try to minimize any extra work an author
needs to do to improve the accessibility of the math.

4 Conclusions
The development of author intents has taught us how flexible mathematical
notation can be and how this flexibility is important to mathematicians in their

8

day-to-day practice; all mathematicians we have talked to indicate that inventing
a new notation, and being able to exploit it, is common. This flexibility is
supported by author intents which make it possible to encode new or existing
concepts on any MathML expression which results in speech that is accessible
to the reader.

Different communities use different notations. Where these notations over-
lap, there is ambiguity. It does not seem possible to cleanly partition these
communities because they overlap. Because of this, the only way to resolve am-
biguity is at the notation level where the author tells the AT what should be
said. As an example, the last row of Figure 1 x|y demonstrates a notation that
could be used in a number theory course with the sense of integer division, as
such-that in a proof, and of conditional probability all in one paragraph.

It is important to note that “intent” is forward-looking: only new documents
can use it. Earlier work using heuristics and textual context are still important
to handle legacy documents.

References
[1] Bansal, A., Sorge, V., Balakrishnan, M.: Extracting contextual semantic

from a concordance containing mathematical definition. Studies in Health
Technology (2023). 10.3233/SHTI230607

[2] Carlisle, D.: Mathematical markup language (mathml) version 4.0, editors
draft (11 2023)

[3] Cervone, D., Sorge, V.: Adaptable accessibility features for mathematics
on the web. 16th Int. Web for All Conference pp. 1–4 (2019)

[4] Farmer, D.: Space Math – A Mathematical Notation System & LATEX
Translator (2024), https://github.com/davidfarmer/SpaceMath

[5] Frankel, L., Brownstein, B., Soiffer, N.: Expanding audio access to mathe-
matics expressions by students with visual impairments via mathml. Tech.
rep., ETS (2017). 10.1002/ets2.12132

[6] Gillan, D.J., Barraza, P., Karshmer, A.I., Pazuchanics, S.: Cognitive anal-
ysis of equation reading: Application to the development of the math genie.
In: Computers Helping People with Special Needs. pp. 630–637 (2004).
10.1007/978-3-540-27817-7_94

[7] Howell, J., Quek, F.: Math for those with severe low vision: From the
particulars to the gestalt (and back again). IEEE Frontiers in Education
Conf. pp. 1–9 (2023). 10.1109/FIE58773.2023.10343509

[8] Klingenberg, O., Holkesik, A., Augestadt, L.: Digital learning in mathe-
matics for students with severe visual impairment: A systematic review. J.
of Visual Impairment 38 (2019). 10.1177/026461961987697

9

https://github.com/davidfarmer/SpaceMath

[9] Raman, T.V.: Audio system for technical readings. Ph.D. thesis, Cornell
University (1994)

[10] Sargent, M.: Welcome to UnicodeMath (2024), https://unicodemath.or
g/

[11] Schubotz, M., Grigorev, A., Leich, M., Cohl, H., Meuschke, N., Gipp, B.,
Abdou, S., Youssef, V., Markl: Semantification of identifiers in mathematics
for better math information retrieval. SIGIR ’16 pp. 135–144 (2016). 10.1
145/2911451.2911503

[12] Schubotz, M., Krämer, L., Meuschkeh, N., Hamborg, F., Gipp, B., Jones,
G.: Evaluating and improving the extraction of mathematical identifier
definitions. LNCS 10456 (2017). 10.1007/978-3-319-65813-1_7

[13] Soiffer, N.: Mathplayer v2. 1: web-based math accessibility. 7th ACM
SIGACCESS Conference pp. 257–258 (10 2007)

[14] Soiffer, N.: MathCAT: Math Capable Assistive Technology (2024), available
at https://nsoiffer.github.io/MathCAT/

[15] Stegmuller, J., Schubotz, M.: Wikitexvc: Mediawiki’s native latex to
mathml converter for wikipedia (2024). 10.48550/arXiv.2401.16786

10

https://unicodemath.org/
https://unicodemath.org/
https://nsoiffer.github.io/MathCAT/

	Background
	Author Intent in MathML 4
	Author Intent Basics
	Intent Concepts
	Intent Properties
	Intent and Content MathML

	Evaluating the Success of Intent
	Conclusions

