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Abstract
MathML has been successful in improving the accessibility of mathemati-
cal notation on the web. All major screen readers support MathML to gen-
erate speech, allow navigation of the math, and generate braille. A trou-
blesome area remains: handling ambiguous notations such as |x|. While 
it is possible to speak this syntactically, anecdotal evidence indicates most 
people prefer semantic speech such as “absolute value of x” or “determi-
nant of x” instead of “vertical bar x vertical bar” when first hearing an 
expression. Several heuristics to infer semantics have improved speech, but 
ultimately, the author is the one who definitively knows how an expression 
is meant to be spoken. The W3C Math Working Group is in the process of 
allowing authors to convey their intent in MathML markup via an intent
attribute. This paper describes that work.
Keywords: Visual Impairment· Assistive Technology· Speech· STEM 
· Mathematics · Formulas · MathML

1 Background
The W3C first recommended MathML as the method for including mathematical 
expressions in web documents in 1998. Browser adoption was slow, but by 
early 2023, all the major browsers supported MathML. Support for MathML 
by screen readers came along many years before that milestone. The quality 
of the speech and the number of languages supported (both in speech and in 
braille) varies. Some math-specific Assistive Technology (AT) software1 such as 

1The focus of this paper is on mathematical expressions. Accessibility of expressions in-
volves speech, navigation, and braille. We do not discuss other important accessibility topics 
such as plots/graphs and diagrams.
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xT “x to the T” or “x transpose”

x′ “x prime” or “first derivative of x”

AB “line segment A B” or “complex conjugate of A times B”

(a, b) “point a comma b”, “open interval from a to b” or “gcd of a and b”

x|y “x divides y”, “x such that y” or “x given y”

Figure 1: Examples of ambiguous notations

SRE [3], MathPlayer [13], and MathCAT [14] put significant effort into inferring 
the semantics so that superscripts are not always powers and pairs of vertical 
bars do not always mean absolute value. Some examples of ambiguity are given 
in Figure 1.

One way to avoid ambiguity is to speak the expression syntactically. For 
example, |x| can be spoken as “vertical bar x vertical bar” and AB can be 
spoken as “start A B end grouping with line above.” To our knowledge, there 
have not been any studies that compare listener preference for syntactic speech 
vs. semantic speech. It seems likely that semantic speech is preferable because 
syntactic speech is usually not what people are used to hearing and is also often 
longer. Comparing the speech for |x| and AB, syntactic speech requires 9 and 
10 syllables, respectively, versus 6 and 5 syllables for semantic speech.

The most common approach to generate semantic speech is to infer what the 
author means by looking at the notation and its arguments. For example, to 
distinguish between absolute value and determinant, a single capital letter or 
a square table as the argument between verticals bars (e.g., |M |) would likely 
be a determinant, not an absolute value [11]. To varying degrees, AT looks at 
the arguments to generate speech for expressions like x2 (“x squared”). Math-
Player [13] goes further than most; it has over 800 patterns to improve speech. 
About 200 of these patterns are only active if the user specifies a subject area 
(this number includes chemistry speech rules). For example, if the user chooses 
the subject area “probability & statistics”, then x is read as “mean of x” in-
stead of “x bar”. If “calculus” is chosen, × is read as “cross product” rather 
than “times”. This helps resolve ambiguity at the cost of having the user inform 
MathPlayer about the content that is being read. MathPlayer’s use of sub-
ject area was a motivating factor for the W3C Math Working Group to explore 
adding “intent”. However, it is not rare to see texts that use the same notation 
for different concepts, e.g. (a, b) for both the open-interval and the coordinates 
of a point.

Another approach is to use the surrounding textual context to understand 
the math content [12]. In 2017, we presented a method that extracts definitions 
for identifiers with an F1 score of 36%. Language models are rapidly improving. 
In 2023, Bansal, et. al. [1] described a matching learning approach to recognize 
definitions of symbols used in an expression by looking at the immediate sur-
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rounding context. For example, their work deduces from “Let F : Rn −→ Rn

be a C1-vector field” that F  is a C1 vector field. The paper from 2022 lists an 
F1 score of 75% in their data set for finding a definition. However, no numbers 
indicate how often this is useful for improving speech, which is the final goal of 
their work.

For large expressions, a number of people have advocated that an overview 
(or outline or summary) of an expression be given. AsTeR [9] automatically 
elided subexpressions, but no study was done on its effectiveness. As part of the 
MathGenie project, a study [6] showed that providing an outline slowed solution 
time. Nonetheless, outlines were included in MathGenie because the authors 
felt it would be useful. MathPlayer provides an option to describe an expression 
rather than read it. In a ClearSpeak navigation study [5] using MathPlayer, user 
feedback was that outlines were not very useful. The study authors feel part of 
this is because the implementation was crude relative to other features. As with 
reading, ambiguity can arise when summarizing expressions.

In addition to speech and braille, the ability to review a portion of an ex-
pression is important in expressions that are not simple. Most AT allows for 
navigation of expressions via a tree-based model, not unlike the MathML rep-
resentation of the expression. In [7], the authors use a touch/tactile-based ap-
proach to navigation for people who are blind but have some small amount of 
residual sight (enough to resolve light/dark). This allows the users to take ad-
vantage of the physical relationships in mathematical notations (e.g., numerators 
are above denominators) that sighted users take advantage of. They compare 
their prototype for an iPhone with a tactile grid overlay to JAWS and find sta-
tistically significant benefits for touch including less frustration/effort and faster 
relocation of items. While spatial navigation is more user-friendly, the problem 
of ambiguous notations is still present.

In [8], the authors note that the use of audio for reading maths textbooks is 
on the rise, sometimes as an alternative to braille. They point out that the right 
to learn to read (braille) should be supported. The paper stresses the lack of 
high-quality studies on the topic of mathematics learning for visually impaired.

While previous work has improved the quality of the generated speech, heuris-
tics can never be perfect and are ultimately guesses as to what the author meant. 
Furthermore, even when AT knows what the author means, that doesn’t neces-
sarily indicate how the author wants a notation pronounced. For example, 1/3 
can be read as “one divided by three” or “one third” depending on what is being 
learned. The work presented here aims to support AT to generate better speech 
and, in some cases, better braille from MathML expressions.2

2Most braille codes are based on just the basic structure of the expression (subscripts, 
superscripts, etc.). They are based not on semantic meaning (index, power, etc.). There are 
a few exceptions to this, such as needing to know whether “:” is meant to convey a ratio or 
something else in Nemeth code. “Intent” can also help with braille generation in those special 
cases.
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              <mrow intent="absolute-value($contents)">
                <mo>|</mo>
                <mi arg="contents">x</mi>
                <mo>|</mo>
              </mrow>

Figure 2: Simple intent example

2 Author Intent in MathML 4
The above approaches significantly improve the understandability of the gen-
erated speech. However, they are still heuristics and thus sometimes wrong. 
To complement these efforts, the W3C’s Math Working Group is updating the 
MathML standard to allow specification of how an expression should be spoken 
[2]. Authors can use this standard to correct heuristics, or AI researchers can 
evaluate the performance of their heuristics. Following the idea of correcting 
heuristics, the W3C’s Math Working Group decided that an approach that uses 
progressive enhancement is most appropriate: do not require changes; instead, 
allow for those notations where an author wants to make sure of unambiguity. 
As a rule of thumb, an author might want to enhance notations in cases when 
she would explain it in a classroom or at presentation, e.g., when she would write 
xT  she might say “T means transposed”.

2.1 Author Intent Basics
The approach the Math WG settled on is to allow intent and arg attributes 
on all MathML elements. The attribute’s value has a simple, functional syntax. 
This syntax allows both the function head (the function name along with its 
properties) and its arguments to be literals, references to descendant elements, 
or another function. Literals can be numbers or names. See section 5.1 of [2] for 
a full grammar. A simple example for the “absolute-value” concept is shown in 
Figure 2.

References are prefixed with $ and some descendant of the referencing el-
ement should have a corresponding arg attribute value. In figure 2, this is 
demonstrated with the reference “contents”. See 2.2 for details.

By default, “intent” values should be spoken as functions are spoken, so 
the expression in figure 2 might be spoken as “absolute value of x”, but AT is 
free to use other functional ways of speaking the “intent”, such as a terse form 
(“absolute value x”) or a verbose form (“the absolute value of x”). Properties 
(see 2.3) allow for other ways of speaking an “intent”.

In parallel with the MathML 4 recommendation, the working group is fleshing 
out a core list of “intent” concepts and “intent” properties with proposed speech 
hints.3 This list is a reference for notations/speech that AT implementations 

3Current working drafts are linked from https://w3c.github.io/mathml-docs/ .

4

https://w3c.github.io/mathml-docs/


should support. The core list is intended to cover most mathematics taught 
up to the university level. The list includes suggested speech in a few different 
languages. As a complement, an open list of “intent” concepts and properties is 
maintained; new notations are constantly created so the open list will never be 
complete. The open list serves both as a place where people can check to see if 
an “intent” concept has already been thought about and as a source of future 
additions to the core list. AT is free to implement any concepts or properties in 
the open lists.

2.2 Intent Concepts
The function name in an “intent” is referred to as the concept name in MathML 4. 
If the AT knows nothing about the concept name, it should be spoken as written. 
However, the working group’s “core” list provides names for which AT should 
be aware of and for which it should provide translations for the languages it 
supports. Some of these concepts, such as “fraction” have many ways they are 
spoken depending on the arguments (e.g., “one third”, “one over x”, “one over 
x all over two over x”, “meters per second”). For someone who is blind, some of 
these speech patterns may include start/end words or sounds to make it clear 
where the fraction starts and ends; for others, these extra words or sounds may 
hinder comprehension. Authors rarely know their readers’ needs, so MathML 4 
delegates the exact speech for core concepts to AT. If an author wants to force 
specific words to be used, a concept name can start with an underscore; no core 
names start with an underscore.

Concept names are not always a name; they can also be a reference. A 
reference (either the concept name or an argument) can be any child with an
arg attribute. References start with a $ character. The reference does not 
need to be unique in the document. This allows generating software to reuse 
templates. The algorithm for finding a reference is to do a depth-first search of 
the children stopping when a matching arg attribute value is found. If the arg
attribute value matches the reference, the search is done. Otherwise, the element 
is treated as a leaf and the search continues in the parent. Figure 3 shows an 
example with nested “intents” for a nested power 

(︁
x2 + y2

)︁2 that might come 
from software that uses a template for powers. If an intent has illegal syntax 
or references nonexistent arg attributes, the intent should be ignored by AT.

2.3 Intent Properties
By default, concept names are spoken in a functional manner, but this is not 
always appropriate. For example, x2

⃓⃓
3
 might have the concept name “evaluated-

at” and is typically spoken as “x squared evaluated at 3” not as “evaluated-at of x 
squared and 3”. To solve this problem, “intent” can be given a “fixity” property. 
The allowed values are “function”, “silent”, “prefix”, “infix”, and “postfix”.4 

4The Math WG is still considering adding other values such as “matchfix” to allow for 
other speech patterns.
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               <msup intent="power($base,$n)">
                 <mrow arg="base">
                   <mo>(</mo>
                   <msup intent="power($base,$n)">
                     <mi arg="base">x</mi><mn arg="n">2</mn>
                   </msup>
                   <mo>+</mo>
                   <msup intent="power($base,$n)">
                     <mi arg="base">y</mi><mn arg="n">2</mn>
                   </msup>
                   <mo>)</mo>
                </mrow>
                <mn arg="n">2</mn>
               </msup>

Figure 3: Example of nested arguments in “intent”

Properties begin with “:” and there is no limit to the number of properties that 
can be attached to a concept name. For “evaluated-at”, we might have

<mrow intent="evaluated-at:infix($expr, $value)"> . . . </mrow>
Early on, the Math WG realized that some notations that make use of the 

mtable element are complicated to specify using just concept names. For exam-
ple, each equation in a system of equations is often divided up into columns to 
force alignment. To bring each equation back together, it would be necessary 
to list all the entries in each row as part of an “equation” concept. To remedy 
this, table properties tell AT how to speak the children. For a system of equa-
tions, the table can be marked with the “intent” value “system-of-equations” 
and AT should ignore the columns and just speak the table as (for example) 
“2 equations, equation 1 …, equation 2, …end equations”. The current list of 
core table properties is “matrix”, “piecewise”, “system-of-equations”, “lines”, 
and “continued-row”.

Other properties are used to avoid having generating software know lots of 
related names. These include properties for chemical elements, units, and roman 
numerals. There is also a “chemical-equation” property that notifies AT that 
chemical notation is being used so subscript, superscripts and some operators 
are spoken appropriately (e.g., “=” is a double bond, not “equals”).

2.4 Intent and Content MathML
In MathML, two families of elements are defined: Presentation MathML en-
codes how expressions are set out typographically with such typical features as 
subscripts/superscripts, fractions, or bracket-pairs. Content MathML encodes 
how expressions are understood or interpreted with typical features as function 
applications, quantifiers, or externally documented symbols.
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MathML expressions, i.e., semantics elements, thus can have two trees: a con-
tent tree and/or a presentation tree. Linking between content and presentation 
elements can be done with references or nested semantics elements. Content 
MathML is made available by and for computing engines. Some translations 
between presentation and content (with many assumptions) exist with limited 
scope (e.g., for simple equation expressions). While there may be an interest in 
finding on the web expressions with content MathML (e.g., to allow readers to 
perform computations), they are much less frequent than presentation MathML.

A few experiments led by members of the W3C Math Working Group have 
shown that content MathML can be used to generate a better accessible presen-
tation of mathematical formulas if the semantic is available. However, the fact 
that content MathML is less widespread and sometimes less able to encode all 
mathematical discourse (without adding many symbols) has pushed the W3C 
Math group to propose a structure that is closer to the speech and that applies 
to expressions which are directly made in presentation MathML.

3 Evaluating the Success of Intent
While “intent” is aimed at improving speech for end users, the main target for 
“intent” are authors of documents that contain MathML. The reason tests for 
end users are not a focus is because “intent” should only improve the accessibility 
of math and never make it worse: “intent” gives AT the ability to know the 
author’s intention of how the notation should be spoken as opposed to having 
to guess the best way to speak the notation. AT has the choice to make use of 
this information or ignore it (e.g., to produce a syntactic reading rather than a 
semantic one). Therefore, the way to measure the success of “intent” is two-fold:

1. Are software developers that generate or consume MathML generating or 
consuming “intent” or planning to generate or consume “intent”?

2. For the authoring software that generates “intent”, do users make use of 
facilities provided so the software can generate “intent”?

It is very early to evaluate either of these criteria given that the MathML 4 rec-
ommendation has not even moved to a Candidate Recommendation, let alone an 
actual recommendation. For the first question, there are definite signs of success 
as both MathML generators and AT that consumes “intent” have prototypes.

On the generating side, all of the prototype authoring tools that have been 
developed are text-based and have some resemblance to TEX. In general, the 
authoring tools use macros or special syntax such as “\abs” and ‘\det” to pass 
along the author’s intent when there is ambiguity. Discussions have also included 
the use of optional macro arguments to pass along intent information. For ex-
ample: \times[intent=cross-product] would produce the following MathML: 
<mo intent="cross-product">×</mo>

Three prototypes have been developed so far:
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WikiTexVC: [15] has the option to add valid “intent” syntax with a pseudo 
TEX macro to add “intent” to the MathML produced by Wikipedia, and 
other projects using MediaWiki.

UnicodeMath: [10] adds keywords that are Unicode characters when needed to 
resolve ambiguity and uses those to generate intents. For example, “(a)x” 
uses the Unicode code point “(a)” (U+249C) to indicate that what follows 
is the absolute value of x. This is used in speech generation.

SpaceMath: [4] a superset of LATEX (both text and math) and AsciiMath that 
includes keywords and macros to generate intents. It will likely become an 
option for PreTeXt authors.

No WYSIWYG editors that make use of “intent” have been developed yet, 
but ideas on how they might do this involve the use of specialized templates such 
as one for binomial that would generate an appropriate “intent” even if using 
the MathML-code as that of a 2d-vector. Another option is to allow users to 
select a symbol or expression and provide a menu of options for that symbol or 
expression. For example, selecting “×” might pop up a menu with the options: 
“times”, “cartesian-product”, “cross-product”, “direct-product”, and “custom…”.

On the consuming side, both UnicodeMath and MathCAT implement “in-
tent”. Support for “intent” is included in the release version of MathCAT that 
is used in NVDA and JAWS and several other ATs. To generate speech, Math-
CAT first produces an intent tree from MathML. This is trivial if “intent” is 
given. If there is no intent attribute, then MathCAT tries to infer the intent 
using heuristics. The “intent” tree is then used to generate speech in various 
languages and in different styles of speech. The Math Working Group created 
a document with many examples comparing MathCAT’s speech with and with-
out “intents”. Among the lessons learned from this exercise was that “intent” 
properties for tables such as those used for aligned systems of equations greatly 
simplified MathML generation without complicating the implementation.

At this point in time, we lack information as to users’ willingness to use 
features that allow generation of “intent”. This is because the number of users 
of these prototypes is small and mostly includes the software authors and their 
colleagues. However, all have reported that generating “intent” is relatively 
straightforward. One of the PreTeXt implementers reported that authors are 
generally willing to improve the accessibility of their books if it is not much of a 
burden [D. Farmer, personal communication, 4 April, 2024]. As with many ac-
cessibility features (e.g., using headings in documents rather than just changing 
the font), getting users to use styles/keywords/macros likely requires education 
as to their benefits. All the prototypes try to minimize any extra work an author 
needs to do to improve the accessibility of the math.

4 Conclusions
The development of author intents has taught us how flexible mathematical 
notation can be and how this flexibility is important to mathematicians in their 
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day-to-day practice; all mathematicians we have talked to indicate that inventing 
a new notation, and being able to exploit it, is common. This flexibility is 
supported by author intents which make it possible to encode new or existing 
concepts on any MathML expression which results in speech that is accessible 
to the reader.

Different communities use different notations. Where these notations over-
lap, there is ambiguity. It does not seem possible to cleanly partition these 
communities because they overlap. Because of this, the only way to resolve am-
biguity is at the notation level where the author tells the AT what should be 
said. As an example, the last row of Figure 1 x|y demonstrates a notation that 
could be used in a number theory course with the sense of integer division, as 
such-that in a proof, and of conditional probability all in one paragraph.

It is important to note that “intent” is forward-looking: only new documents 
can use it. Earlier work using heuristics and textual context are still important 
to handle legacy documents.
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