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ABSTRACT

Document editing has migrated in the last decade from a
mostly individual activity to a shared activity among multi-
ple persons. The World Wide Web and other communication
means have contributed to this evolution. However, collabo-
ration via the web has shown a tendency to centralize infor-
mation, making it accessible to subsequent uses and abuses,
such as surveillance, marketing, and data theft.

Traditionally, access control policies have been enforced
by a central authority, usually the server hosting the con-
tent, a single point of failure. We describe a novel scheme for
collaborative editing in which clients enforce access control
through the use of strong encryption. Encryption keys are dis-
tributed as the portion of a URI which is not shared with the
server, enabling users to adopt a variety of document security
workflows. This system separates access to the information
(“the key”) from the responsibility of hosting the content
(“the carrier of the vault”), allowing privacy-conscious editors
to enjoy a modern collaborative editing experience without
relaxing their requirements.

The paper presents CryptPad, an open-source reference
implementation which features a variety of editors which em-
ploy the described access control methodology. We will detail
approaches for implementing a variety of features required
for user productivity in a manner that satisfies user-defined
privacy concerns.
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1 INTRODUCTION

In this paper, we present CryptPad [6], an open source [5],
cloud-based suite of collaborative editors which is private
by design [14]. While CryptPad has already been deployed
as a production-ready system which is actively used, it is
worthwhile to expose both the means and motivation for its
development.

User testimonies have indicated previous or contempora-
neous reliance on either Google Docs or Etherpad for tasks
which required collaborative editing functionality. The techni-
cal architecture of either platform is such that the resolution
of conflicts when editing is performed by the central server.
One side effect of this design is that the contents of the doc-
ument must be accessible to the server, and therefore legible
to the server operator.

In the case of Google Docs, the software is provided as
a service by a single provider. Google’s privacy policy is
very explicit about their right to “process personal infor-
mation on behalf of and according to the instructions of a
third party” [22]. As wariness of this business model has be-
come increasingly common, it has been referred to by the
unfavourable moniker of Surveillance Capitalism: “constituted
by unexpected and often illegible mechanisms of extraction,
commodification, and control that effectively exile persons
from their own behavior while producing new markets of
behavioral prediction and modification.” [44].

While the term personal information may seem to imply
that such arrangements primarily affect individuals, even very
large organizations are subject to the same terms. Indeed, the
influence of Silicon Valley companies has become so pervasive
that the Danish government felt the need to appoint a digital
ambassador [40].

https://doi.org/10.1145/3209280.3209535
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As Etherpad has been freely available as an open-source
project since it was acquired by Google in 2009, many privacy-
conscious users have adopted it for their personal usage.
While this may satisfy the privacy concerns of the server
administrator, from anyone else’s perspective it is simply a
change in whom they place their trust. While certain server
operators may offer a collaborative service with the promise
that they will never read a user’s content, users lack both
transparency and any recourse in the event that they change
their minds.

Whatever a user’s preferences may be with regards to their
privacy, they are often secondary to their immediate goals.
Lacking an option which enables their productivity while
respecting their privacy, many have reluctantly continued
to accept the shortcomings of the systems mentioned above.
Even so, an expanding demographic of technical and politi-
cally savvy users have found it increasingly difficult to ignore
the value being extracted from their daily interaction with
the tools around them.

As a scientific contribution, we intend to describe the sys-
tem which enables collaborative editing of various document
types in a manner which respects user privacy. Beyond that,
we hope to address the social and economic factors which
have made such a system necessary.

We will first provide a comprehensive overview of the
technical and social problems which have contributed to the
current challenges in adopting privacy-respecting editing soft-
ware. This will be followed by a summary of the constraints
which have hindered adoption in the past, and influenced the
technical architecture of the system for our reference server
and clients described thereafter.

Having detailed the context and implementation of the
system, we propose a framework for evaluating its suitability
for particular use cases, taking into account its resistance to
likely attacks. Finally, we specify a variety of improvements
to the cryptosystem which would mitigate certain attacks or
improve user experience.

2 PROBLEM DEFINITION

For brevity’s sake, we’ll refer to the unencrypted counterparts
of cryptographic productivity tools as their baseline. As
our system offers a variety of editors, it is not always possi-
ble to compare against a single competing service, however,
generally we will compare against those established in our
introduction: Google Docs and Etherpad.

Through consultations with end-users, we have found that
requirements are generally well satisfied by our baselines,
except those relating to the legibility of documents by the
host service. As services with pleasing interfaces are already
available, it is expected that new services will provide equally
professional designs while addressing privacy concerns.

Notably, those with whom we have consulted have re-
ported that there is not a viable alternative which satisfies
their privacy requirements, despite the existence of a number
of solutions which integrate encryption into local document

editing workflows [3, 4, 7]. Realtime collaboration is a neces-
sary component for our users.

Similarly, users report that despite its proprietary nature,
one advantage of Google Docs over Etherpad is the Drive
functionality, which provides users with both a means of
storing arbitrary files as well as an intuitive directory struc-
ture through which they may browse their documents. For
individuals or organizations that opt to use Etherpad in-
stead, workflows typically incorporate a secondary tool for
indexing, such as a wiki. It would seem that an encrypted
editing platform lacking any built-in functionality for orga-
nizing references to documents stored online, editors would
likely resort to a less secure methodology for making that
information accessible.

The need for organized collections of documents is not
strictly due to collaboration between multiple users, but also
between single users operating across a variety of devices.
For this reason we will discuss collaborative processes as
taking place between agents so as to accommodate such
workflows. As users expect any change made to be available
immediately across devices [33], we consider the near real-
time propagation of state to be an essential property of not
just ordinary documents, but also of document collections.

Finally, high availability is a strict requirement that has
come to be expected of modern collaboration systems. While
this may seem like an obvious implication given latency
requirements, it is worthwhile to state that users require that
their documents remain available to collaborators regardless
of whether they themselves are online.

To summarize, users expect near real-time collaboration,
functionality for the organization of document collections,
support for multi-agent workflows, and high availability of
documents, all while preserving the confidentiality of docu-
ment contents.

3 CONSTRAINTS

The implementation of our system until now has been re-
stricted by a variety of complicating factors outside of our
problem definition. Those considerations are detailed below.

3.1 Privacy

Whether for the mundane purpose of targeted advertising,
or for political agendas justified as anti-terrorism or crime-
prevention, pervasive surveillance has been shown to have
an inhibiting effect upon content-authors [24]. Public aware-
ness of mass surveillance, and its effect on Internet denizens’
behaviour has increased dramatically in recent years due to
media coverage of government leaks, and the complicity of
prominent cloud platforms [32].

Public discourse around privacy is frequently framed ac-
cording to two clear categories of information, whether they
be content and metadata, or personally identifying or anonym-
ized. Either variant of this rhetoric obscures the fact that all
of this information can be valuable under the right circum-
stances. Users that have expressed desire for a system which
restricts their private information do not necessarily possess
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sufficient awareness of the technical details to evaluate the
risks associated with each type of information. As such it is
left to the authors to model likely risks given average circum-
stances, and adapt the proposed cryptosystem according to
feedback. Fuzzy requirements complicate the design process,
and so we assume a minimum requirement to ensure the pri-
vacy of the content of the document. Additional properties
are considered if the cost of their implementation does not
introduce unreasonable complexity.

This may go without saying, but our inability to read
user documents makes it such that we cannot monetize user
content as our baseline competitors are able to. While this
constraint is hardly scientific in nature, it is worth mention-
ing, as our goal is to provide a working, industrialized system
that ensures user privacy. Our ability to meet this goal is un-
fortunately tied to the project’s sustainability in an industry
which has embraced the Freemium business model [35].

3.2 Public reception

The necessity of encryption is not apparent to the general
public, as evidenced by the fact that approximately 30% of
web traffic is not yet protected by transport-layer security
(TLS) [8]. Nevertheless, adoption has increased dramatically
since the advent of freely available SSL certificates. Failure
to adopt encryption is not necessarily due to ambivalence
on the topic, as workplace monitoring is mandated by many
companies [20]. Users may not be in a position to sacrifice
employability, social status, or productivity for privacy.

Though critical for modern networking infrastructure, TLS
can be considered an incomplete encryption scheme, as it
only protects traffic between agents and servers which pos-
sess certificates. A more effective means of preventing the
compromise of an agent’s private information is to rely on
end-to-end-encryption (e2ee).

Additionally, we cannot ignore the role of government reg-
ulation and response regarding cryptography. The European
Union’s decision to implement the GDPR [17] presents a
strong pro-privacy stance, though its text is clearly at odds
with those who support the rise of Silicon Valley as an eco-
nomic superpower [25]. The value of a collaborative tool is
highly dependent on its ability to be adopted by organizations
which can span across borders.

3.3 Resource consumption

Computing power has improved drastically over time, but
with all else being equal applications including cryptography
are at a disadvantage with regards to performance compared
to their baseline. For privileged users with access to modern
hardware, this may not be an issue, but for those with lim-
ited resources and baseline expectations, the resulting user
experience may serve as a barrier to adoption.

Debate remains, however, about whether wide-
spread use of encryption was feasible in the
early days of the Internet. The heavy computing
demands, some experts say, could have made
TCP/IP too difficult to implement, leading to

some other protocol — and some network other
than the Internet — becoming dominant. (see [41])

Though modern implementations of widely used ciphers
have been subject to extensive optimization, there are other
operations which incur a significant cost due to information-
theoretic constraints. Textual search on documents is typi-
cally implemented in a centralized manner, relying on the
server which hosts the information to return relevant results.
As this type of operation is necessarily at odds with our
fundamental requirements, such features require careful con-
sideration, though users may regard search as a relatively
basic feature.

3.4 Deployment

The availability of web browsers may serve to lower barriers
to adoption, however, it is still subject to many constraints.
Some users are not able to choose the browser they would
prefer, due to workplace policy, limitations of the host plat-
form, or due to only having access to shared computers (such
as at a school or library). Users on corporate or academic
networks often find themselves subject to the whims of highly
restrictive firewall policies. Users may have to deal with very
poor connectivity due to living in very remote, or poorly
developed locations. The failure of a web application may
stem from any one of these factors, or from an inconsistently
implemented web API. In any case, it is expected that the
software address such eventualities using only the limited
privileges of a web page.

The requirement that no server ever learn the contents of
a user’s document could be satisfied by relying on a peer to
peer architecture, such that the document is never stored
on a server. In practice, we find that APIs for peer to peer
communication in the browser are insufficiently reliable for
our purposes. Until such a time as IPv6 deployment is wide-
spread, and NAT traversal is either no longer necessary or
sufficiently ubiquitous that any given agent may effortlessly
communicate directly with any other, there is justification
to believe that purely peer-to-peer, multi-agent computing
(aka fog computing [42]) will not become a reliable option.

For the time being, agents which must communicate rely
on unrestricted servers for mutual introduction, using ei-
ther Session Traversal of User Datagram Protocol through
Network Address Translation (STUN), or Traversal Using
Relays around NAT (TURN) [31]. Even if that were not the
case, the problem of data availability remains, as agents may
be theoretically reachable may not have guaranteed uptime.
While we await solutions for either of these difficult problems,
cloud computing provides a satisfactory solution to address
connectivity and resource availability.

3.5 Usability

An increasing number of open-source, user-facing e2ee appli-
cations have become available within the last decade. Many
boast intuitive user interfaces, and can be deployed to a
global audience as web services. E2ee pastebins [9], file-upload
services [12], and instant messengers featuring voice and
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video [19, 26] are all available. The leap from encrypted file
upload to a fully featured editing suite introduces many ad-
ditional user expectations, however. While an interface can
offer visual similarities, e2ee imposes severe restrictions as to
how a system is implemented.

Despite the support of a growing minority which is pro-
foundly unsatisfied with the current state of the market, and
great advances which have been made by a community which
is by no means limited to the authors, there remain signifi-
cant challenges to the engineering of a serious competitor to
existing cloud-based editors.

Ultimately, we can expect that current browser APIs will
stabilize, network connectivity will improve, and available
personal computing hardware will become more capable of
exceeding the demands of cryptographic algorithms. By con-
trast, we cannot expect that the practices of the average end
user will become less detrimental to their own well-being [38],
as attacks against network infrastructure are adversarial in
nature, and thus likely to become progressively more so-
phisticated as time goes on. Despite the work between 2005
and 2016, when the papers Why can’t Johnny encrypt [43]
and Can Johnny finally encrypt? [26] were published, we
are led to believe that encrypting content is too hard for
non-specialists, and that “Johnny generally cannot encrypt”.
Researchers in the field have argued that ease of use and ac-
cessibility must be given their fair consideration as security
properties [27].

We cannot expect that the complex mathematical proper-
ties involved in encryption will become simpler for end users
to reason about. As such, we posit that without significant
innovation in this regard, the adoption of privacy enhancing
technologies within document engineering will not advance
beyond its current status quo.

4 ARCHITECTURE

As specified in the problem definition section, web-based peer-
to-peer approaches depending on technologies like WebRTC
are not considered reliable for most use cases. Due to the
necessity of publicly available STUN or TURN servers in such
implementations, we opt instead to use a conventional client-
server model. Wherever possible, client-side implementations
allow for truly peer-to-peer collaborative editing; however,
in practice at least one of the peers must typically remain
available for the purpose of storing and providing document
history.

Since it is a core requirement that documents remain illeg-
ible to any but the intended participants, the responsibilities
of the server are significantly reduced. As such, the vast
majority of the application is implemented on clients, an
architecture which may seem highly unorthodox compared
to baseline implementations.

4.1 Database

CryptPad implements a simple store and forward server [23],
with a database reflecting the Kappa architecture design
pattern which relies heavily on append-only immutable

logs [34]. Each real-time document corresponds to a single
append-only log on the server, generally referred to as a
channel. Each entry in the log constitutes a patch: an encoded
instruction which transforms a document from one state into
another.

The database is considered public information, as it is
expected that access-control will be implemented on the client
using strong encryption. Client-side encryption renders the
content of each channel illegible to the server. Each channel is
accessible via a unique, high-entropy hexadecimal identifier.
Clients are responsible for maintaining the pairwise list of
channels and encryption keys which enable collaboration.

4.2 Key distribution

CryptPad exploits the fact that by design, clients do not
send information stored in the fragment identifier (the part
of the URI after an octothorpe (#)) to HTTP servers in their
requests [13]. As such, it is considered safe to store channel
identifiers (considered public), and channel encryption keys
(considered private) within the fragment identifier. By parsing
data encoded into the URL using Javascript, clients are able
to request and decrypt all information provided by the server.
Furthermore, these URLs can be shared with other agents
over any medium, providing access to the document. Since
these URLs are effectively immutable, documents may link
to one another in whatever manner desired by the user.

4.3 CryptDrive

Figure 1: CryptDrive

Users that have logged in are able to save their preferences,
and access a virtual file system known as their CryptDrive.
Preferences and the contents of a CryptDrive are stored
within an arbitrarily nested encrypted data structure, the
technical specifications of which will be described below.
From the perspective of the server, this data structure is just
another real-time document, stored in a channel.

Through the use of the above data structure, referred to as
the user-object, the secret information necessary to collabora-
tively edit more conventional document types can be stored
for later reference. The channel and encryption keys for this
special document can be derived from a cryptographically-
secure random source and stored using the localStorage browser
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API, enabling single-device usage. Alternatively, any device
with knowledge of the channel identifier and encryption keys
can access a shared CryptDrive from multiple devices.

4.4 Identity

Figure 2: registration

Registration and Login for the purpose of cross-device
access are implemented on the client using the Scrypt password-
based key derivation function (as implemented by scrypt-
async.js [10]). By deterministically transforming a username
and password into a high-entropy stream of bytes, it is pos-
sible for users to interact with familiar user-interface which
consistently yields the information necessary for them to
access their user object from any device.

Registration and login only differ in that the registration
process verifies that a user does not already exist for that
exact set of credentials, and initializes user data, while login
verifies that such a user has already registered.

4.5 Remote Procedure Calls

While many other features could be implemented entirely on
the client as well, the server is in a position to do so in a
considerably more efficient manner for most tasks, and so
this privileged position is leveraged for optimization purposes.
For example, a client could check the size of a particular log
by streaming it, and counting the number of bytes, incurring
a significant load on the network and the server, which would
be responsible for reading and streaming the log. Instead,
the server performs a single operation which is orders of
magnitude less intensive, and sends the result to the client.

The common task of authenticating users for the purpose
of quota management and remote procedure calls (RPCs)
is achieved through the use of public-key cryptography. Au-
thenticated clients each possess an ed25519 signing keypair
(as implemented within tweetnacl.js [11], and each request
is signed to prove that they possess the private key corre-
sponding to the public key which constitutes their identity.
All server-enforced access control is based upon this pseudo-
nym, such that the server need not ever record a password
or username.

5 SERVER IMPLEMENTATION

Our reference implementation server is written in Javascript
(NodeJS), to facilitate the reuse of code on clients. It im-
plements both a static web-server and an API server. In
production environments, the responsibilities of the web-
server are fulfilled by a dedicated process, as Javascript’s
single-threaded model is not ideal for the task.

5.1 API server

Low-latency client-server communication is achieved through
the use of websockets, and so the availability of the WebSocket
API acts as a hard requirement for our supported clients.

The server acts as a relay between clients, effectively be-
having like a group messaging server. Upon connecting to the
server, each user is assigned a temporary, unique identifier.
Clients may then join channels, the transient membership of
which is maintained by the server. The server also implements
direct messaging, which clients can leverage to communicate
with other clients using their temporary identifier.

Channel broadcast is defined as the delivery of a message
(encoded as JSON) from one member to every other in the
channel. Broadcast messages are appended to the channel’s
log.

Our implementation uses a pluggable storage API which
is currently backed by an abstracted interface for writing to
the host file-system. Each channel corresponds to a distinct
file, with each message stored as a serialized JSON object,
and discrete messages delimited by newline characters.

New channels are created by writing the immutable prop-
erties of the document as a JSON map to the first line of
its file. The properties to be encoded will be detailed in the
client specification below.

The protocols implemented for websocket communication
also include the RPC functionality mentioned above. Clients
can leverage this functionality to upload encrypted files, re-
quest the deletion of a channel which they own, or interact
with the list of files which are counted against their quota.
Channels and encrypted files unaccounted for by any user’s
quota are eventually removed after a period of inactivity.

5.2 HTTP Server

In addition to the API server described above, CryptPad
also relies on the usage of a traditional HTTP server for
delivering static content to clients. While static web servers
are generally a fairly unsophisticated component of a web
application, CryptPad relies on some advanced configuration
to mitigate certain attacks.

In implementing a complex, multi-user cryptosystem in the
browser, we have presented adversaries with a considerable
attack surface. Fortunately, a great advancement in the field
of web application security in the Content Security Policy
(CSP) specification [37].

Through the use of CSP headers sent as part of the HTTP
responses, a server is able to inform a client which resources
it should consider safe. CryptPad’s static content is served
over two separate domains, with CSP and the same-origin



DocEng ’18, August 28–31, 2018, Halifax, NS, Canada A. MacSween et al.

security policy enforcing limitations on what data is accessi-
ble. Any interaction with sensitive data is performed on the
safe domain, while most other computation is executed in an
iframe on the unsafe domain. Any communication that must
occur between the two domains is achieved via the iframe’s
postMessage API, with limitations as to what information
can be shared enforced by code running on the safe domain.
Through this methodology, even in the event that a mali-
cious actor is able to leverage a cross-site scripting (XSS)
vulnerability, the value of the data that can be extracted is
severely restricted. A similar approach has been detailed in
2013, described as CryptFrames [39].

6 CLIENT IMPLEMENTATION

As noted above, considerably more of CryptPad’s functional-
ity is implemented on the client than on the server. This has
significant benefits in terms of scalability, as a single server
can support many more agents than would be possible if it
were responsible for the same responsibilities.

ChainPad, the document consensus engine, and its various
extensions (presented below in dedicated sections), play a
central role in obviating the need for server-based conflict
resolution. Considerable development effort is avoided by de-
pending on third-party editors wherever possible, and merely
adapting their interfaces for use with our encryption and
data replication protocols.

6.1 ChainPad

Described as a Realtime Collaborative Editor Algorithm based
on Nakamoto Blockchains [2], is provided as a reference im-
plementation in ECMAScript 5 (Javascript). It is capable of
execution in all modern Javascript runtimes, including the
most popular browsers and NodeJS. Though ChainPad was
developed independently, a similar approach was employed
in the SPORC collaborative editing algorithm [21].

Its methodology assumes that agents participating in a
collaborative session have some means of communicating with
one another, and that the collaborative document can be
represented as a UTF8 string. Documents are initialized as
the empty string (""). Clients track the document according
to two notions, the authoritative document or authDoc
for which all connected agents have reached consensus, and
each particular agent’s subjective view of the document or
userDoc.

Each agent is able to set their userDoc to any UTF8 string.
ChainPad is used to formulate their revision to the document
as a patch, a sequence of operations with sufficient information
for peers to transform their representation of the document
to match that of the agent making the modification.

An operation is defined as:

(1) an offset (a number of UTF8 characters relative to the
start of the document)

(2) a number of characters to remove (relative to the offset)
(3) a string to insert at the offset

A document’s history can be replayed, with its integrity
assured by the inclusion of the sha256 hash of the preceding

patch known to the editing user, forming an immutable hash-
chain comparable to that popularized by Bitcoin, but without
the imposed difficulty of proof-of-work computations.

Patches can be encrypted client-side before being sent
over the network. Concurrent patches are reconciled using a
simple operational transformation algorithm implemented on
all clients, which formulates a new patch taking into account
incoming patches.

Patches are considered to apply to the userDoc until the
client receives acknowledgement that they have been delivered
and accepted, at which time they are considered to be a part
of the authDoc.

Patches which result in document states considered invalid
by contemporary clients are rejected. A divergence between
at least two agents is known as a fork. Forks can be the result
of intermittent connection loss or other circumstances, but in
any case they are resolved by the longest valid chain being
considered the authoritative state of the document.

This scheme would seem to imply that to participate in
a document, an agent must synchronize its entire history
before attempting to append new patches. In practice, this
is avoided via a simple checkpointing mechanism, whereby
every 50th patch consists of the removal and reinsertion of
the entire document.

6.2 Encryption

CryptPad derives its name from the fact that any time an
agent broadcasts messages (either to contemporary agents, or
strictly for the purpose of adding a revision to the document’s
history), it encrypts its messages before communicating them
to the server. In most situations, the cryptography employed
is the authenticated symmetric xsalsa20-poly1305 cipher.

Newly created messages are signed using ed25519 keys,
the public keys for which are shared with the server, such
that it can reject invalid messages which could otherwise
be inserted into the channel history. Thusly, there are four
possible configurations for clients:

(1) agents with both the symmetric encryption key and
the shared secret signing key are able to craft valid
patches and append to the document history

(2) agents with only the symmetric encryption key are able
to view the document, but not add or revise content

(3) agents possessing the signing key alone are able to
insert invalid messages into the document history, Such
agents can inconvenience legitimate editors with invalid
content which will be ignored, however, they cannot
read or modify the resulting document’s content

(4) agents with neither key (including the server) are
able to download publicly available encrypted content,
but not read the decrypted contents, nor append new
patches to the history

The scheme detailed above is implemented as a configura-
tion point, which allows for any number of other ciphersuites
to be employed depending on the intended application, such
as:
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(1) disabling encryption in trusted environments where
secrecy is not a requirement

(2) enabling one-to-one encrypted collaboration channels
based on public key cryptography

(3) facilitating crypto-agility, upgrading to more resilient
ciphers as they become available [15]

6.3 ChainPad-ListMap

ChainPad only supports UTF8 documents, which would
seem to limit its application to simple plain-text documents.
ChainPad-ListMap [1] makes it possible to collaboratively
edit documents represented as arbitrarily-nested JSON data
types.

It is implemented primarily with ECMAScript 5, using
only the Proxy API specified within ECMAScript 6 if it is
available, falling back to alternative behaviour otherwise.

Changes made to the collaborative data structure are
transformed into patches compatible with ChainPad by first
transforming the structure into a canonical representation in
the form of a UTF8 string, and then proceeding to formulate
patches which can be communicated to other clients. Con-
versely, upon receiving patches, they are applied against the
UTF8 representation, and then transformed into an object,
after which a structural comparison is made. Differences are
encoded as instructions to update the exposed proxy such
that they match the state reflected within ChainPad.

Applications can be built on top of this data structure
by observing changes to the structure via a simple callback-
based pattern-matching API. This has been employed to
great effect within the CryptDrive application, among other
use-cases.

7 EVALUATION

Given the incommensurability of performance and privacy,
it can be difficult to make a clear comparison of encrypted
productivity tools against their baseline. We adopt the evalu-
ation criteria proposed by the authors of Depot [30]; in their
words, “What is the price of distrust?”.

In our system, particular features may have equivalents
to the of the baseline implementation, but at a greater cost
in terms of computational resources. Alternative features
may be available, but their properties may differ from the
conventional workflow, requiring adjustment on the users’
part. Finally, features may be conjectured or proven to be
impossible to implement in a privacy-preserving manner,
necessitating that users either accept their omission or accept
the loss of privacy.

On the topic of real-time collaboration, latency introduced
by our consensus algorithm is orders of magnitude smaller
than the average latency between users and the host server,
which is typically the case for our baseline comparisons as
well. Furthermore, our server is able to handle much more
load with fewer resources, by offloading the majority of the
processing to clients.

The organization of documents via an agent’s user-object
consumes more resources compared to our baselines. Since the

agent’s personal database is effectively implemented on the
client, insertions, modifications, and deletions all require that
the client instantiate a complete ChainPad session. While
there are avenues for decreasing the expense of this synchro-
nization, they have yet to be implemented.

There are significant usability challenges to our approach
for multi-agent workflows, foremost of which that multiple
users can use the same username, and that password change
is not possible. Solutions will be detailed in the future devel-
opment section, though, it should suffice to say that if the
server were able to reset a user’s password to recover their
documents, it would be possible for a compromized service
provider to reset the password for the user’s adversaries. Our
unconventional approach can result in user confusion in aver-
age cases, and at worst, users that do not understand that
we cannot recover their data are liable to lose access to it.

CryptPad competes well in terms of the availability of
documents, as our cloud-service methodology does not differ
significantly from our baselines. With that being said, our
patch-based document format does incur a penalty with
regards to network transfers. This overhead makes tasks like
conventional textual search impractical.

Our platform excels where user privacy is concerned. Our
service operates not only without knowledge of the user’s
content, but by reusing our document synchronization algo-
rithms for generic user data, we avoid learning metadata like
document names, file types, and user tags. Furthermore, it
is sufficiently generic to implement editing of a variety of
document types.

8 ATTACK VECTORS

In order to ensure user requirements, our service must be
able to withstand a variety of malicious behaviour. Some
common attack vectors and their efficacy are detailed below.

8.1 Brute force decryption

The history of CryptPad’s channels are considered public
information. Barring any unforeseen vulnerabilities in our
cryptographic dependencies, brute force decryption is not
considered a viable attack vector due to the widely believed
efficacy of the ciphers we have employed, and the size of the
keyspace against which any attacks would be directed.

8.2 Denial of Service

DoS attacks, and more notably distributed denial of service
(DDoS) attacks are unsophisticated, though they can be
effective on a temporary basis. It is very likely that in the
event of a sustained attack of this type, an experienced
service operator would be able to take steps to mitigate its
effectiveness, such as restricting access from particular IP
ranges.

8.3 Ongoing device access

In the event that a user’s device becomes compromized on
an ongoing basis, either remotely or via regular local access,
there is practically nothing that the service provider can
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do to aid the user. Such adversaries would be able to log a
user’s keystrokes and learn their secret credentials. In any
case, an adversary with the ability to fully compromize a
device would not have any less difficulty affecting a user of
a baseline service. As such, we consider such attacks out of
scope.

8.4 Restricted/momentary device access

A sophisticated adversary could leverage temporary access
to discover the channel id and encryption key used to secure
a user’s CryptDrive. At present, the cryptosystem employed
to secure a user’s CryptDrive does not implement forward-
secrecy. Unfortunately, the implication of this is that given
the right circumstances and expertise, an attacker can gain
ongoing access to a user’s CryptDrive and all the documents
referenced therein.

8.5 MitM

A Man in the Middle (MitM) attack can be mitigated by
serving CryptPad over HTTPS. In the event of an exploit
that renders HTTPS ineffective, an adversary could modify
the Javascript sent to the client such that it would leak their
encryption keys, to a result comparable to that of momentary
device access detailed above. Such an exploit would affect
most of the world’s services, including our baselines.

8.6 Passive surveillance of out-of-band
communication

Assuming users communicate over a separate channel, such
as e-mail or an instant messaging platform, the operator of
that channel would be able to observe the secret informa-
tion necessary to join a collaborative session themself. The
CryptPad API server does not do anything to prevent such
an attack, however, membership of the channel is broadcast
to all members, so such an obverver would be visible if they
joined a session. Users can effectively mitigate this class of
attack by either using a third-party encrypted messenger, or
by using the encrypted channels provided by the CryptPad
platform itself.

8.7 Passive server exposure

This vector assumes that the operator of the service is not
acting out of malicious intent, however, they may have been
the recipient of a subpoena or other legal mechanism which
compels them to provide passive access to their server, reading
the filesystem contents, and observing network traffic.

Such a situation is not catastrophic, as all explicit content
is encrypted before being sent to the user, however, such
an observer could still gather considerable information by
observing HTTP logs or network access. As a web service,
common details such as a user’s IP address, user-agent string,
and activity patterns can reveal information which may be
leveraged against them in the future.

To limit what metadata is exposed, users can access the
service using the Tor anonymization network, and employ a
variety of similar techniques which would make them difficult

to identify. Even so, users who authenticate with the server
using its public key methodology will still be identifiable via
their persistent pseudonym.

8.8 Corrupt server

A fully corrupt server is a disastrous scenario, whether due
to the actions of a malicious administrator or through their
incompetence leading to third-parties gaining unauthorized
access.

Anyone in control of a server has all the capacity of a
MitM attack, such as serving malicious Javascript to leak all
of their keys. Such an attack is considered an active attack,
however, which most adversaries will hesitate to employ as it
reveals their intentions and capacity in the event that they
are caught.

Should evidence of unauthorized access be detected, the
operator can shut down their server and notify users of a
breach, just in case any of the Javascript was modified with
malicious intent. So long as the attack goes undetected, any
user accessing and executing the compromized source will be
at risk of leaking all of their secret data.

9 FUTURE DEVELOPMENT

The following remarks concern research or development which
has not yet been integrated into the platform. The following
sections will address the shortcomings of the system which
we have acknowledged.

We consider it well within the scope of the platform to
make it such that a user’s likelihood to be compromized
is minimized, whether through an architectural flaw in the
platform, or through patterns of usage which make their
information likely to be leaked. Furthermore, if the platform
is sufficiently unsatisfying that users prefer to collaborate
via a platform which does not employ strong encryption, we
consider that their information has been compromized all
the same.

Given this and the various attack vectors which could
still be effective, our future plans include developing features
which would both make users more likely to adopt the plat-
form for their daily use, and other steps to directly limit
the efficacy of the attacks described above. Future topics
of interest can be classified under usability, scalability, and
improved security.

9.1 Usability

For users that access CryptPad using low-resource systems
(when compared to current average specifications), we hope
to optimize key points in our algorithms such that they are
satisfied with the performance-privacy tradeoff described in
our evaluation criteria. For users accessing the service over
poorly connected networks, we hope to be able to decrease
any overhead incurred by our on-wire encoding such that
fewer bytes must be transmitted to the server.

In terms of workflows, the management of passwords is
a topic clearly in need of improvement. While we feel our
position against password reset is justified, we also see the
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difficulty and frustration experienced by users who have lost
or forgotten their password. Unfortunately, the widespread
availability of password reset features for web services has
trained users to create new accounts without considering a
long-term strategy for securely and resiliently storing their
credentials. We are considering means of recovering access
to a user’s account based on Shamir’s Secret Sharing [36] or
similar (t, n) threshold-based secret sharing schemes, relying
on the division of shares amongst a combination of friends
and distinct cloud services, though more research into the
viability of this as an intuitive solution is required.

Finally, in terms of usability, we would like to simplify
the process of sharing access with other users to address its
current shortcomings. One approach is to enable password-
protection for documents such that even if the URL leaks,
users must correctly guess a passphrase to access the contents.
Other schemes include using public key encryption for links,
such that only the intended user (who must possess a public
key which is readily available) would be able to decrypt the
message to access the actual shared secret. This could be
made transparent to the user via a dedicated app for decrypt-
ing such secrets, and would appear to behave superficially
like a redirect through a link-shortening service with which
many users are already accustomed.

9.2 Scalability

Some features within the platform are tightly coupled, such as
the RPC and storage mechanisms. Furthermore, our reference
implementation is a single Javascript process, meaning that
all processing is executed on a single thread. While this
detail has simplified development, it also makes it difficult to
provision additional computing resources to the API server,
which places a hard limit on how many users can be supported
by a particular instance of CryptPad.

So long as a particular API server must be hosted by a
single machine, it will continue to be necessary for users
who are farther away from that server to tolerate greater
latency. A more flexible, distributed architecture will not only
accomodate more users, but provide a better user experience
for these users.

9.3 Security improvements

In conjunction with the user-experience improvements to
our password management scheme, there is also room for
improvement in terms of mitigating password-related security
issues. Currently, users whose passwords are exposed have
no means of changing their passwords. This is a separate
issue from password recovery, because we assume a user still
has access to their account. In the event that another user
learns their password, or they realize that another service
that shares that password was compromized, this is a critical
workflow. Fortunately, there is already useful research into
applications for password-based architectures which do not
rely on trust, for use in peer-to-peer computing [28]. While
CryptPad is not strictly peer-to-peer, these same methods
can easily be adapted for our admittedly simpler use case.

Should the content of a user’s CryptDrive be exposed, it
would be prudent to limit the damage through an improved
scheme which can promise forward secrecy.

The effectiveness of less severe attacks like passive server
exposure for collecting metadata could be limited through
application of the various techniques developed in the field
of private information retrieval [16]. Failing that, we can
continue to ensure that the platform remains accessible to
users connecting through the Tor network.

Finally, the most severe situation, in which a corrupt server
delivers malicious Javascript, must be addressed. The most
promising approach for this threat is to implement a trust
on first use (TOFU) bootloader which verifies authenticity
of deployed scripts via the sub-resource integrity API [18].
This bootloader could then provide a root signature signed
by the developers, with a public registry of verified signatures
made available for auditing purposes, similar to the approach
leveraged for certificate transparency [29].

10 CONCLUSION

Our system has proven to be highly satisfactory for our grow-
ing user base, who until now have been sorely underserved
by existing industrial competitors. Even so, considerable
research and development is still required in order to pro-
vide some functionality which users have come to expect.
Ultimately, demands are not strictly limited to editing func-
tionality. Users require support for a variety of workflows,
including categorization, discoverability, and private inter-
user communication in order to guarantee the confidentiality
of their content.

Our research indicates that a multi-disciplinary approach is
most effective when designing privacy-enhancing technologies.
At a minimum, there is evidence to believe that attempts must
consider cryptography, cognitive ergonomics, and application
engineering in order to serve users attempting to protect
themselves from online surveillance.

We expect the demand for privacy-preserving collabora-
tion platforms to grow as more of the world’s productivity
practices depend on cloud-based services. In order to pre-
vent cooption or compromize of such platforms, techniques
ensuring the integrity of deployed systems will need to be
employed. At present, the system still requires users to place
some trust in their server administrators, however, the level of
trust is reduced compared to that of our competing services.
Notably, as most security is implemented clientside, there is
a degree of accountability introduced, empowering users to
trust, but verify.
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