
Authoring Presentation for OpenMath

Shahid Manzoor, Paul Libbrecht, Carsten Ullrich, and Erica Melis

Deutsches Forschungszentrum für Künstliche Intelligenz
{manzoor, paul, cullrich, melis}@activemath.org

Abstract. Some mathematical objects can have more than one
notation. When a system compiles mathematical material from multiple
sources, a management effort to maintain uniform and appropriate no-
tations becomes necessary. Additionally, the need arises to facilitate the
notations editing of the mathematical objects with authoring tools. In
this paper, we present our work towards those needs. We have designed
a framework that defines an authoring cycle supported by series of tools,
which eases the creation of notations for the symbols in the process of
publishing mathematics for the web.

1 Introduction

ActiveMath [MAB+01] is an adaptive and interactive web-based learning en-
vironment for mathematics. It dynamically generates content adapted to the
students profile i.e. goals, preferences (e.g. personalized presentation and field of
interest etc), capabilities, and knowledge. The mathematical content in Active-
Math is represented in OMDoc [Koh04] and are stored in a knowledge base. The
motivation for our work comes from a number of problems we experienced with
authors when they write mathematical course material in the ActiveMath en-
vironment. For instance, in different languages, different mathematical notations
for a symbol are used: the slope symbol in English is written as slope(F, p), or
steigung(F, p) in German. Moreover, different authors want to use different no-
tations for the same mathematical objects such as 1

2 or 1 : 2, a ∗ b or ab, d
dxf or

f ′x.
However, authors are challenged when writing the presentation of the math-

ematical expression. The current approaches provide a meta stylesheet (an xml
encoding to represent the notations for the symbols) as an authoring support,
which is converted into xslt-templates. That is, the authors lack authoring tools
which ease their notations editing and tools to ease the publishing tasks.

We propose a framework that defines an authoring cycle for the editing of
symbols’ notations which involves a series of tools that support the process
from editing to previewing the notations. This framework simplifies the symbols’
notation authoring process.

We start with a description of the current approaches for authoring Open-
Math symbols’ notations. Thereafter, we describe problems in these authoring
processes. In Sec. 4, we explain the xml encoding for the notation and annota-
tions. We discuss our authoring tools and environment for the notations editing.

2

Finally we describe how the notations are processed in the presentation archi-
tecture of ActiveMath.

2 Previously Existing Approaches to Presentation
Generation for OpenMath

MathML is a W3C standard for representing 2-dimensional mathematical for-
mulæ on the web. It has been embedded inside xhtml. It comes with two lan-
guages, Presentation MathML (PMML) and ContentMathML-content. The
PMML concentrates on the presentation of the expression. On the other hand,
MathML-content organizes mathematical formulæ in trees of operators, vari-
ables, and numbers with well defined semantics. Its set of possible symbols is,
however, fixed.

OpenMath’s primary goal is to serve as a communication of mathematical
objects between applications. Similarly to MathML-content, it organizes for-
mulæ in trees of mathematical symbols. Contrary to MathML-content, Open-
Math has a well defined extensibility mechanism: one can write content-dictionaries
(CD) to provide a description of new symbols.

Generally, xslt is used to transform the OpenMath objects into the output
formats, such as html or TEX. In [Car00] and [Koh04], an xslt based algorithm
is described to generate the presentation. There, an template rule is required for
each symbol. Each template generates the notation in output format recursively.
The match rule for each template is built with name and cd attributes. Below is
an example of an xslt template for the divide symbol..

<xsl:template match=”om:OMA[om:OMS[position()=1 and @name=’divide’ and @cd=’arith1’]]”>
<mfrac>

<xsl:apply−templates select=”∗[2]” />
<xsl:apply−templates select=”∗[3]” />

</mfrac>
</xsl:template>

OMDoc [Koh04] provides a <presentation> element to write notations aiming
to facilitate the authoring support, as hand written xslt templates are tedious
and error-prone. The <presentation> element points to the symbol for which
the presentation is being written. It uses the <style>, <xslt> and <use> ele-
ments to generate a particular presentation of a symbol. For complex notations
such authoring requires is defining the body of an xslt template. For simple
notation binary operators, subscripts, list, and fraction, the easy syntax of the
<use> element is sufficient. This approach supports the xslt templates genera-
tion for multiple output formats. But, authors have to specify the notation for
each output format.

In Fig. 1, the example of <presentation> element represents the notation for
the divide OpenMath symbol in three output formats. Each <use> element
represents the notation, specified as character data for html (/) and LATEX
(\frac) or element attribute for MathML (mfrac).

3

<presentation role=”applied” for=”divide” theory=”arith2”>
<use format=”html”>/</use>
<use format=”mathml” element=”mfrac” />
<use format=”latex”>\frac</use>

</presentation>

Fig. 1. Example of presentation tag in OMDoc

Another approach is discussed in [NW01], in which Naylor and Watt have
introduced the concept meta stylehseet that generates the xslt stylesheet auto-
matically for PMML and MathML-content formats. They proposed the meta
stylesheet as an extension to Content Dictionaries, in which the notation of the
symbol in PMML and TEX along with the OpenMath expression is repre-
sented together. An example for the divide symbol is shown below. The no-
tation is represented in <version> element and the OpenMath expression in
<semantic_template>.

<Notation>
<version precedence=”200” style=”1” >

<math>
<mfrac>

<mi xref=”arg1”>a</mi>
<mi xref=”arg2”>b</mi>

</mfrac>
</math>

</version>
<semantic template>
<OMOBJ>

<OMA>
<OMS cd=”arith1” name=”divide” />
<OMV id=”arg1” name=”a” />
<OMV id=”arg2” name=”b” />

</OMA>
</OMOBJ>
</semantic template>

</Notation>

Fig. 2. An example of the notation of the divide symbol following [NW01].

In this approach, the XPath of the arguments in the generated xslt templates
is determined by linking the symbols and the notations with their attributes as
in Fig. 2: the elements with id attribute represent arguments in the OpenMath
expression) and xref indicates the argument in PMML.

4

3 Symbols Presentation Authoring Problems

Although meta stylesheet approaches discussed in the previous section provide a
basic authoring support, authors may experience difficulty in writing notations
for the OpenMath symbols. The problems are as follows: first, some mathe-
matical symbols can be presented in many ways. The automatic adaptation of a
notation (from many notations for a symbol) in different contexts such as class,
book and student is an issue, especially when different materials are presented or
merged. For instance, in ActiveMath, materials may be compiled by merging
the contents from different authors or collections. Secondly, authors, who have
little or no background in programming, are required to write presentation in
complex xml or xslt structures. And last, but not least, authors may wish to
highlight mathematical expressions by (a) making a box around the contents,
(b) changing the background color, or, (c) labeling etc (See Fig. 3).

Fig. 3. An example of a mathematical expression with annotations

Most authors need an easy to use authoring environment, where they can
edit the notations for the OpenMath symbols as well as preview it in the target
presentation.

4 Solving Authors’ Problems

Generally, authors use specialized editors for content authoring, which provide
facilities that are best suited to their task. The editor selection depends on
the content type or format. For instance, for xml documents editing there are
specialized editors that understand the structural behavior and grammar of the
documents in general. If an editor is aware of the usage of the xml document,
for example when editing OMDoc documents for ActiveMath, it is possible to
make the editing easier and more productive.

jEditOQMath [Lib04] is such an authoring environment: it is a package dis-
tributed to the authors of content for the ActiveMath learning environment. It
is based on the open-source text-editor jEdit and its rich support for the editing
of xml documents allows the easy creation and maintenance of valid xml doc-
uments. It adds several search facilities specialized for OMDoc and is integrated

5

with the ActiveMath server of the author: it hosts publishing routines which,
report consistency errors; it provides quick-open and quick-link facilities using
the drag-and-drop paradigm. jEditOQMath is freely available.1

Editing mathematical formulæ is done in the OQMath language2 which is
converted to OpenMath formulae. It converts a highly readable, linear, syntax
to OpenMath expressions (thanks to the usage of Unicode characters such as
∃ or Ω) in a way that authors can extend with new (input-level) notations. The
experience with jEditOQMath thus far has proven that the OQMath verbosity
is acceptable for mathematical documents. It has also proven that error feedback
is important when using an environment where such a rich presentation process
is applied.

Our solution provides a framework that defines an authoring process for
notation editing to the publishing in ActiveMath. The framework consists of 2
phases. The Phase I deals with OpenMath and notation editing. The notations
are edited by our tool called OpenMath Presentation Editor (OMPE). OMPE is
run as a plug-in of jEditOQMath providing the notation authoring facility within
the same environment where the authors edit their mathematical documents.
Phase II is initiated passively, when the contents are previewed in ActiveMath.
In this phase the notations can be adapted according to contextual information
such as language, class/group, student and book. The whole process utilizes a
<symbolpresentation> element, which we discuss in the next section.

4.1 Knowledge Representation of the Symbols Notations

In order to define different notations of a symbol, we have introduced the el-
ement <symbolpresentation>. It encapsulates the data to generate the xslt
templates for multiple output formats, currently html, MathML and LATEX.
The grammar of the <symbolpresentation> element is shown in the table be-
low.

tag attributes children
symbolpresentation xref, id (notation)+

notation notation, precedence, format,
language, lbrack, rbrack, style

(math,OMOBJ)

symbolpresentation : represents notations for a symbol. Its xref attribute
points to the symbol for which notation is being written. It can contain
multiple notations of a symbol, and each notation is represented by the
<notation> element.

notation : Each notation element represents one notation of the symbol. For
this purpose, it contains two structures, ie. PMML and OpenMath. Its
format attribute contains a list of output formats for the symbol. Three
attributes, precedence, lbrack and rbrack, control the bracket printing
around the symbol. The left bracket is only printed, if the symbol precedence
is less than the parent symbol. The same algorithm works with the right

1 Please see http://www.activemath.org/projects/jEditOQMath/.
2 Please see http://www.activemath.org/projects/OQMath/.

6

bracket with the corresponding attributes. Its style and language attributes
are used to define selectors for a symbol that will be used at rendering time
to choose the appropriate notation.

OMOBJ : The OMOBJ element represents the OpenMath expression con-
taining the prototype of the symbol for which a presentation is being writ-
ten. The OpenMath symbols in this expression are used in three possible
ways: 1) as function, applied to its arguments represented inside the OMA
element, 2) standalone, or 3) having an attribute inside the attribution ob-
ject (OMATTR). This expression allows the production of xslt-templates
applied to symbols or more complex expressions. The arguments are repre-
sented by <OMV> elements.

math : This element contains Presentation MathML (PMML) expression rep-
resenting the notation for a symbol. The arguments in the notation (PMML)
is represented by an <mi> element. The arguments in both PMML and Open-
Math expression are mapped by pairing the name attribute of the <OMV> el-
ement and content of the <mi>. The XPath expression in the xslt template
is calculated by matching the arguments in both the expressions.

An example of the plus notation in <symbolpresentation> element is shown
in Fig. 4.

<symbolpresentation xmlns=”http://www.activemath.org/namespaces/am content”
id=”arith1plus 77 24” xref=”mbase://openmath−cds/arith1/plus”>

<notation format=”html|pmathml|TeX” precedence=”110” lbrack=”(” rbrack=”)”>
<math xmlns=”http://www.w3.org/1998/Math/MathML”>

<mrow>
<mi>a</mi>
<mo>+</mo>
<mi>b</mi>

</mrow>
</math>
<OMOBJ xmlns=”http://www.openmath.org/OpenMath”>

<OMA>
<OMS cd=”arith1” name=”plus” />
<OMV name=”a” />
<OMV name=”b” />

</OMA>
</OMOBJ>

</notation>
</symbolpresentation>

Fig. 4. Example of <symbolpresentation> element for the plus symbol

7

4.2 Dealing with Different Notations for the same symbol

Our structure allows the authors to define different notations for a symbol. For
each notation, a new definition of <notation> element is required. Below are
contexts we have identified to influence the adaptation in symbol notation.

Language : This deals with internationalization for the symbols. Some sym-
bols have different notations depending on the languages, e.g. the great-
est common divisor symbol is written gcd(a, b) in English but is written
kgV(a, b) in German. Using our notation infrastructure allows to solve the
internationalized symbol presentation in LeActiveMath as discussed in
the report [LW05]. To associate a notation with a language, we are using the
language attribute of the <notation> element.

Different patterns of the arguments : One of the variations in the symbol
rendering occurs when it has a different organization or number of the argu-
ments. Consider the two notations,

∑n
x=1 x and

∑
x∈m x , of the sum symbol.

In the example, both sum symbols differ in their first arguments, i.e. be it
the interval 1 to n or the set m. For each case like this, an author has to
define a <notation> element.

Authors Styles : There are situations in which the symbol notation differs
depending on the authors’ styles even though the symbols are alike in all
respects. Example of such presentations are: 1

2 or 1 : 2, a ∗ b or a·b or ab, df
dx

or f ′x. For this, we provide a style attribute of the notation which allows
the authors to define their own specific style notation for a symbol.
This multiple styles notations raise the question of the selectivity of a partic-
ular notation especially, when a material is compiled by merging the contents
from different sources. We defined the following priorization for a consistent
material presentation in ActiveMath from least to highest priority:

– System Defaults has the least priority in the system. All collections
xslt templates are merged into one, the import order of xslt rules is
used to manage this priority.

– Author/Collection This is the authors’ default notation defined for
a particular collection. It is automatically selected, if no other priority
level is defined.

– Book A book can be generated by selecting a list of learning concepts
from different content collections. At this priority level and other follow-
ing levels, priority should be assigned by the notation selector tool which
should store the priority information in the book configuration.

– Group The group represents a group of learners, for example a class,
studying a common course. We expect, for example, teachers responsible
of a course to adapt notations for their classes.

– Individual The students himself may be able to assign the priority to
a notation. His choices, which we expect to be rare, have the highest
priority level.

Within the Same Collection : In this context, the authors want to define
different notations of the same symbol within the same collection. Take, for

8

example, the associativity law of the plus symbol, i.e a+(b+c) = (a+b)+c.
The default notation for the plus symbol will not print the bracket, but
explicit brackets are required to explain the law. This kind of cases is handled
with OpenMath attribution object. We have introduced a type attribute
for the application OpenMath object to define for multiple notations of the
same symbol. The type attribute abstractly defines a class of the symbols
for which special treatment is made during the presentation generation. So,
whenever an author wants a special notation other than the default in his
book, he can assign this attribute to the instance of the application object
containing the particular symbol. In Fig. 5, an example of the plus notation
for a specific occasion is shown.

<symbolpresentation id=”arith1plus 3 88” xref=”mbase://openmath−cds/arith1/plus”>
<notation format=”html|pmathml|TeX” precedence=”110” lbrack=”(” rbrack=”)”>

<math xmlns=”http://www.w3.org/1998/Math/MathML”>
<mrow><mo>(</mo>

<mi>a</mi>
<mi>+</mi>
<mi>b</mi>
<mo>)</mo></mrow>

</math>
<OMOBJ xmlns=”http://www.openmath.org/OpenMath”>

<OMATTR>
<OMATP>

<OMS cd=”am.presentation” name=”type”/>
<OMV name=”associative”/>

</OMATP>
<OMA>

<OMS cd=”arith1” name=”plus” />
<OMV name=”a” />
<OMV name=”b” />

</OMA>
</OMATTR>

</OMOBJ>
</notation>

</symbolpresentation>

Fig. 5. Example of the plus symbol notation with type attribute.

4.3 Knowledge Representation for the OpenMath Objects
Annotations

Sometimes the authors wish to emphasize a sub-expression to elaborate a concept
by annotating it with styles such as colors, borders, fonts etc or by adding a

9

label. We have built a mechanism for attaching mathematical expressions to
styles of a stylesheet using the attribution elements. The stylesheet contains the
style definitions like color, background color, border, etc. Additional information
can be stored in an attribution object. For instance, an author can assign an
attribute error to OpenMath expression (as in Fig. 6) to highlight a mistake
in an exercise step by rendering the background in the red color as is described
Fig. 9.

We use the attribution object to define the additional information for the
presentation systems. Adding attributes to the OpenMath objects does not
change the meaning of the object. Moreover, OpenMath applications can ignore
the attributes, if they do not know its meaning. Therefore attributes are the ideal
place to store the data about the specialized presentation.

<OMOBJ xmlns=”http://www.openmath.org/OpenMath”>
<OMA>

<OMS name=”plus” cd=”arith1” />
<OMV name=”a”/>
<OMATTR>

<OMATP>
<OMS name=”type” cd=”am.presentation”>

<OMV name=”error” />
</OMATP>
<OMV name=”b” />

</OMATTR>
</OMA>

</OMOBJ>

Fig. 6. An example of stylistic annotation using an OpenMath attribution.

Presentation Attributes In the following we propose a list of attributes to
be used for storing the information about annotations:

type : This attribute assigns a type to an OpenMath object. The value of this
variable can be any string in the name attribute of <OMV>. In our approach,
we use the type attribute for defining multiple notations of a symbol (see
Fig. 5).
The type attribute is also used to invoke the stylesheet for the presentation
of a symbol; as in Fig. 6, error identifier is attributed to an OpenMath
object.

label : Labels attach media information (images, text and math expression)
with the mathematical sub-expressions to illustrate its underlying meaning.
This attribute arranges labels into eight logical positions around the math-
ematical expressions as shown in the Fig. 7.

10

Fig. 7. Various positions for the presentation of labels.

The logical position is assigned via the orientation attribute assigned to
the value object of the label attribute. In the Fig. 8, the label attribute
is assigned to the variable object x. The position of the text Variable is set
down.

$label(orientation(down),”Variable”,x)$

<OMOBJ xmlns=”http://www.openmath.org/OpenMath”>
<OMATTR>

<OMATP>
<OMS name=”label” cd=”am.presentation”>
<OMATTR>

<OMATP>
<OMS name=”orientation” cd=”am.presentation”>
<OMV name=”down” />

</OMATP>
<OMSTR>Variable</OMSTR>

</OMATTR>
</OMAT>
<OMV name=”x” />

</OMATTR>
</OMOBJ>

Fig. 8. An example OpenMath formula with attribution to denote a label. Above it
is the OQMath formula that produces it: this is what we expect the author to input.

Stylesheet: A stylesheet stores style attributes, i.e color, font-size, font-style,
background, border and border-color. These attributes are common for each
output formats (html, MathML and LATEX). The style attributes are grouped
under <styleset> element with a logical name represented in id attribute, e.g.
The <styleset id=‘‘error’’> style contains border and red background in the
stylesheet (an example is shown in Fig. 9). The xslt presentation system of
each output format applies these logical styles to the mathematical expression

11

<Styles>
<styleset id=”error”>

<style name=”border” value=”solid” />
<style name=”background” value=”red” />

</styleset>
</Styles>

Fig. 9. Definition of Error Style

by translating the attributes into their native implementations. For example,
the background attribute , MathML has the mathbackground attribute of the
<style> element, in html, it has background-color in CSS and in LATEX it is
implemented via the colorbox macro. The style definition (<styleset>) is only
instantiated by matching id of the style definition with the type attribute of
the OpenMath objects.

From the authoring point of view, the stylesheet offers an easy way to write
stylistic information by only requiring the definition of the <styleset> element
and the assignment of the type attribute to the OpenMath objects.

4.4 OpenMath Presentation Editor (OMPE)

OMPE is an authoring tool for the symbol notation (<symbolpresentation>)
editing. It accpets a linear syntax for both OpenMath and PMML expressions,
and, reduces the burden of writing long complex xml expressions: the syntax
for the OpenMath input is based on OQMath and the PMML input is similar
to LATEX.

The editor also provides a tool bar, containing buttons for the maths nota-
tions, operators and symbols to help in editing the linear expression for PMML.

OMPE is developed on top of the Java OpenMath Editor (JOME).3 Origi-
nally, JOME was capable of producing a limited set of OpenMath symbols and
content MathML from a linear syntax. We have extended it to produce PMML,
and the notation of the symbol in the <symbolpresentation> tag. OMPE runs
as a plug-in of jEditOQMath as shown in Fig. 10.

To build a new notation, an author has to invoke the editor from an OQMath
document where mathematical input notations are already defined. There, he
provides the required information in the input boxes and then saves it. The new
notation is pasted at the location of the cursor in the document. Alternatively,
the author has to move his cursor inside the <symbolpresentation> element in
the document and then invoke the OMPE editor from the plug-in menu. The
editor loads the notation in its environment and gives the author the opportunity
to edit it. After editing, the author saves the notation, OMPE replaces the old
notation with the edited one.

3 Please see http://jome.sourceforge.net/.

12

Fig. 10. Screenshot of OMPE editor

5 Automatic Presentation Generation

The content presentation process in ActiveMath consists of series of steps mak-
ing a presentation pipeline [ULWM04]. It is a 2-stage process. In the first stage,
contents fragments are fetched from the knowledge base, with some intermediate
preprocessing, and then transformed into output format by using xslt; no adap-
tivity information is known, at this stage, except language. In the second stage,
the fragments are combined to form a complete output page and enriched with
user and context-specific information with the help of velocity code (Velocity4

is a high performance template language to generate dynamic web pages).
The presentation generation comes in the phase II of our authoring process.

It is started automatically in the ActiveMath environment. This phase deals
with the adaptation that consists in selecting a notation among the several ones
available using contextual information. It is made of the following two processes:

5.1 xslt Generation for the Notations

The generation of the xslt code from <symbolpresentation> element is a three
step process (illustrated in Fig. 11). In the first step, the merger extracts all the
<symbolpresenttion> elements from the knowledge base and groups the no-
tations in one <symbolpresentation> element for each symbol. In the second
step, the merged file is passed to the pre-processor, which decorates the no-
tations code with styles, XPath and conditions if required. In the last step, the
4 Please see http://jakarta.apache.org/velocity/.

13

Initiated at ActiveMath startup

XSLT Templates Sources

HTML
 MathML
 LaTeX
`

merger
 Pre-processor
 XSLT-Maker

Presentation Pipe Line

Transformation

Personlization

Context Extractor
 User

Knowledge

Base

Fig. 11. Phase II: Presentation generation for the symbols

decorated notations are passed to the xslt-maker, which finally generates xslt
templates for the three output formats. The blue box in the figure represents,
the generated xslt code for the symbols.

Below are examples of xslt code generated depending on the <notation>
elements for each symbol available in the system.

Example 1 The xslt code for the plus symbol for two cases: 1) having
associative attribute for explicit brackets printing, 2) or default.

<xsl:template match=”om:OMA[om:OMS[@name=’plus’ and @cd=’arith1’]]”>
<xsl:choose>

<xsl:when test=”om:OMATTR[om:OMATP[om:OMS[@name=’type’ and cd=’am.presentation’
and following−sibling::om:OMV[position() =1 and @name=’associative’]]]]”>
<mrow>

<mo>(</mo>
<xsl:apply−templates select=”∗[2]” />
<mo>+</mo>
<xsl:apply−templates select=”∗[3]” />
<mo>)</mo>

</mrow>
</xsl:when>
<xsl:otherwise>

<mrow>
<xsl:apply−templates select=”∗[2]” />

<mo>+</mo>
<xsl:apply−templates select=”∗[3]” />

</mrow>
</xsl:otherwise>

</xsl:choose>
</xsl:template>

14

Example 2 In this example, the language adaptivity (German, i.e. de, on line
3) is checked at xslt level. Further adaptation is made for the author style
(m-notation) in the default language case (on line 11). This xslt template
produces Velocity code (e.g. on lines 12, 19 and 27) where branching between
the notations is done by an #if condition.

1 <xsl:template match=”om:OMA[om:OMS[@name=’slope’ and @cd=’calc1’]]”>
2 <xsl:choose>
3 <xsl:when test=”$language=’de’”>
4 <mrow><msub><mo>steigung</mo>
5 <xsl:apply−templates select=”∗[2]” /></msub>
6 <mrow><mo>(</mo>
7 <xsl:apply−templates select=”∗[3]” />
8 <mo>)</mo></mrow>
9 </mrow>

10 </xsl:when>
11 <xsl:otherwise>
12 <xsl:text>#if ($style.contains(”m−notation”)) then </xsl:text>
13 <mrow><msub><mo>m</mo>
14 <xsl:apply−templates select=”∗[2]” /></msub>
15 <mrow><mo>(</mo>
16 <xsl:apply−templates select=”∗[3]” />
17 <mo>)</mo></mrow>
18 </mrow>
19 <xsl:text> #else</xsl:text>
20 <mrow><mo>slope</mo>
21 <mo>(</mo>
22 <xsl:apply−templates select=”∗[2]” />
23 <mo>,</mo>
24 <xsl:apply−templates select=”∗[3]” />
25 <mo>)</mo>
26 </mrow>
27 <xsl:text> #end</xsl:text>
28 </xsl:otherwise>
29 </xsl:choose>
30 </xsl:template>

Example 3 The example for the sum symbol with different arguments patterns,
i.e set and default.

<xsl:template match=”om:OMA[om:OMS[@name=’sum’ and @cd=’arith1’]]”>
<xsl:choose>

<xsl:when test=”om:OMA[position()=2 and om:OMS[@name=’integer interval’ and @cd=’interval1’]]”>
−

</xsl:when>
<xsl:otherwise>
−

</xsl:otherwise>
</xsl:choose>

15

</xsl:template>

5.2 Notation Generation in Output Formats

Current approaches for the notation generation that we reviewed in Sec. 2 only
deal with xslt generation. In order to adaptively present mathematical nota-
tions, information from the context is needed which can only be acheived by
server side scripting languages such as Servelts, PHP and Velocity. In Active-
Math, this context information is available at Velocity interpretation time, i.e.
in the personalization phase.

The presentation generation pipeline (shown in Fig. 11) is initiated with a
user request from the browser. At the stage of transformation, the annotation
interpreter (a set of xslt templates, shown in green box in the Fig. 11) checks
whether the OpenMath objects (in the contents) are attributed. In that case, it
applies the <styleset> from the stylesheet document or generate supporting
code for the labels. The interpreter implementation is specific to each output
format. The labeling annotation can not be fully handled at the xslt level, be-
cause xslt does not know about the dimension and position of the expression.
For this, we have written output format-specific routines that executes at final
rendering level: for html & MathML, they are executed in the client browser,
for LATEX-based output-formats (currently pdf), a LATEX package was written.
The labeling, in MathML, requires a DOM facility and thus is restricted to the
Mozilla browser currently. At the stage of Personalization in the pipeline, the
Velocity code for multiple notations (discussed in Sec. 5.1) is executed by match-
ing the styles list returned from our ContextExtractor. The ContextExtractor
should retrieve the styles list based on the priority of the context. Currently, it
only extracts style at the collection level.

6 Conclusion and Future Work

In this paper, we have described a solution to the authoring problems that we
have identified in our work with the ActiveMath learning environment. We
believe that other mathematical web presentation systems could benefit from
our work as well.

We are polishing the tools so that authors adopt it as soon as possible, in
particular in the LeActiveMath EU project.5 Further work is also being done
in order to make notations user-visible aside of the description of a symbol.

Currently, adaptivity of a notation is only acheived at the collection level.
Using a notation selection tool similar to6 we intend to offer the management
of notations to a system: it will be of use to authors and editors to edit their
books’ notations, to teachers to edit the classes’ notations, and, potentially, to

5 Please see http://www.leactivemath.org/.
6 Please see Notation Selection Tool at http://www.orcca.on.ca/MathML/NotationSelectionTool/

16

individual users. This will allow the adaptation of a notation as discussed in
Sec.4.2.

Moreover, the notations selected for a presentation have to be synchronized
with presentation of mathematical tools. For instance, an input editor will be
integerated into LeActiveMath; it will enable learners to input mathematical
formulæ into, e.g, the search interface or exercise interactions. The Wiris input
editor7 chosen for this task allows the definition of domain files which describe
the notations for each symbol: an export from the <symbolpresentation> ele-
ments to domain files is under work. The integeration of the input editor within
ActiveMath will take advantage of the notations available for the context and
will, thus, enable learners to input mathematical formulæ using notations con-
sistent with the mathematical content that is presented to them.

References

[Car00] David Carlisle. Openmath, MathML, and XSL. In ACM SIGSAM Bulletin,
volume 34, number 2, pages 6–11, June 2000. ISSN:0163-5824.

[Koh04] Michael Kohlhase. OMDoc an open markup format for mathematical docu-
ments (version 1.2), 2004. Manuscript, http://www.mathweb.org/omdoc/.

[Lib04] P. Libbrecht. Authoring web content in activemath: From developer tools
and further. In Alexandra Christea and Franca Garzotto, editors, Pro-
ceedings of the Second International Workshop on Authoring Adaptive and
Adaptable Educational Hypermedia, AH-2004: Workshop Proceedings, Part
II, CS-Report 04-19, pages 455–460. Technische Universiteit Eindhoven,
2004.

[LW05] ”Paul Libbrecht and Stefan Winterstein”. ”internationaliz-
ing leactivemath”. Technical report, LeActiveMath consortium,
”http://www.leactivemath.org”, ”2005”.

[MAB+01] E. Melis, E. Andrès, J. Büdenbender, A. Frischauf, G. Goguadze, P. Lib-
brecht, M. Pollet, and C. Ullrich. Activemath: A generic and adaptive
web-based learning environment. International Journal of Artificial Intel-
ligence in Education, 12(4):385–407, 2001.

[NW01] Bill Naylor and Stephen Watt. Meta style sheets for the conver-
sion of mathematical documents into multiple forms. In International
Workshop on Mathematical Knowledge Management, September 2001.
http://www.emis.de/proceedings/MKM2001.

[ULWM04] C. Ullrich, P. Libbrecht, S. Winterstein, and M. Mühlenbrock. A flexible
and efficient presentation-architecture for adaptive hypermedia: Descrip-
tion and technical evaluation. In Kinshuk, C. Looi, E. Sutinen, D. Sampson,
I. Aedo, L. Uden, and E. Kähkönen, editors, Proceedings of the 4th IEEE In-
ternational Conference on Advanced Learning Technologies (ICALT 2004),
pages 21–25, 2004.

7 See http://www.wiris.com/.

