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Abstract 

Although it may seem that mathematics education material does not need any enculturation, the opposite is 

true. We report the results of a case study in several European countries and describe the different 

dimensions in which mathematics educational material has to be adapted to the cultural context of the 

learner. We describe the knowledge representation and mechanisms through which the user-adaptive 

learning platform ActiveMath realizes those adaptations to the language, countries, and communities of 

practice.  
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1 Introduction 

At first sight mathematics does not appear to depend much on culture. As a result, most 

known applications of culture theories such as those in [6, 5] do not address mathematics 

and mathematics education. However, in section 5 we will show how some of those 

theoretical findings apply to mathematics and how they can provide hypotheses about 

these differences.  

But even for mathematics-related publications cultural variety is mostly neglected. Take, 

e.g., the OMDoc 1.1 specification, which says ([9], page 27): “Note that Dublin Core also 

defines a Coverage element that specifies the place or time which the publication’s 

contents addresses. This does not seem appropriate for the mathematical content of 

OMDOC, which is largely independent of time and geography.”  



However, national and regional history, dominating groups of mathematics in different 

parts of the world as well as internationally varying measure systems require a selection 

and presentation of mathematics in technology-enhanced learning of mathematics that is 

adapted to the culture of the learner. It is not only the language that requires enculturation 

but also the country context and in some cases the context of smaller communities of 

practice (CoP), e.g., the Bourbaki group of mathematicians or the readers of a particular 

book.  

Communities of Practice have been introduced by Wenger in [22]. He acknowledges that 

(learning) practices are influenced by context(s) and that the internal dynamics of a CoP 

including its norms are determined by the various practices: “negotiation of meaning (i.e., 

understanding of mathematical notations and notions in our case)”, “learning”, as well as 

“community actions” (e.g., social rating), and “differentiation from other CoPs”, where 

the last two may not be as important for the learning context discussed in this paper.  

The inherent social interactions both produce and build upon CoP-specific cultural norms 

and specificities. For instance, any CoP produces abstractions, symbols, stories, terms, 

and concepts that reify something of its practice in a congealed form.  

Communities defined by language or country can generally be seen as CoPs. In the 

following, we address as “CoP” only the somewhat smaller communities. However, the 

same principles and needs for adaptation apply for all CoPs. Anyway, it is more natural 

to ask the learner to which community he belongs in a more hierarchical way and to 

provide different levels of adaptation. For instance, to adapt to the language of a learner 

requires other mechanisms and level than to adapt to a specific notion common for one 

German Federal State only.  

Kohlhase [8] reasons about some of the interactions in communities of mathematicians. 

Our research has empirically collected, addressed, and realized the following needed 

(macro-) adaptations as well as the architecture and knowledge representations needed 

for cultural adaptation. The actual adaptations we consider are  

• language-adapted user interface  

• CoP- and culture-adapted mathematical symbols and measures  

• CoP- and culture-dependent input of formulæ  

• CoP-dependent choices of learning objects  



• CoP- and culture-adapted names of mathematical theorems, etc.  

• culture-adapted sequencing of learning objects  

• curriculum-dependent learning paths. 

The article is structured as follows: first, it elicits the dimensions that need to be adapted 

in a mathematics education system such as ACTIVEMATH [15]. Because the basis of our 

cultural adaptation for education is an empirical one, we present the results of a case 

study which uncovered a number of representative cases, where enculturation of a 

European mathematics education system is necessary. This case study focused on the 

area of calculus (at the levels of high school and first year university). Then, it describes 

the knowledge representation and techniques with which ACTIVEMATH can adapt to the 

language, culture, and CoP of the student (and of authors). Finally, the article discusses 

related theoretical work and research in which different adaptation techniques have been 

tried.  

2 Dimensions of Cultural Variability in Mathematics 
Material 

Although the mathematical language has aspects of a universal language, variations 

occur that are bound to the language, culture of countries, or other communities of 

practice. In this section we present the aspects in which mathematical (learning) material 

can differ from one community to another. In the following, we address not only the 

actual variations in notation, notion, units, and sequencing but also provide examples on 

which type of community – defined by language, country, community of practice – they 

depend on.  

Even cultural variations that seem purely linguistic in nature such as names and 

notions have a cultural and historical background (not easily separable). This is why just 

a translation of words does not work for such educational material, as we observed in our 

case study. Reasons for such differences can originate from a dominant group of 

mathematicians in history and cultural ties to that group in certain countries, regions, and 

groups. A similar development is observable today for Communities of Practice as well. 



Note that cultural differences are often present in language-defined communities. One 

reason may be that in mathematics the history of schools, research, teacher education, 

popular books which influence the education culture go back to a language-defined 

culture that was present before today’s countries existed. Moreover, as it can be observed, 

e.g., in physics, communities of practice that can be sociological structures orthogonal to 

country and language can also play a role in the emergence of cultural variability.  

2.1 Notations 

Mathematical notions and notations can differ:  

• from language to language: e.g., the symbol for the binomial coefficient is Cn
k in 

French speaking countries and (n k) in English speaking countries; 

• from country to country: e.g., the Moroccan mathematical notation is written left-

to-right (influenced by the French tradition) while the Machrek mathematical 

notation (used, e.g., in Egypt) is written right-to-left [11]; 

• from application to application: the symbol for the square root of -1 is i in most 

applications except in electrical engineering, where it is j (since I is the current 

there); 

• from region to region: the German Federal States have different curricula/learning 

path and their textbooks differ, e.g., in notions and notations (see examples 

below) ; 

• from CoP to CoP: e.g., N denotes the set of natural numbers which, in Germany, 

includes 0 for set-theory oriented users, whereas it does not for number-theory 

oriented users. A textbook/author may also indicate a CoP which is using the 

same textbook. Its author may introduce his own notations depending on usage, 

personal style, and typographical capabilities, e.g., “Einstein convention” 

pioneered in [4]. 

2.2 Units 

Units such as meter, inches etc. are special symbols which occur in applications of 

mathematics. The most frequent differences originate from the imperial system of 



measures vs. the metric system. An educational system needs to respect these differences 

too when presenting examples or problems.  

In addition to the imperial/metric differences, units can also be used in a country-

specific way. For instance, in Belgium, land is measured in are while this same unit is 

deprecated by the originators of the metric system, the Bureau des Poids et Mesures [18].  

Similarly, application domains use different units to measure. For instance, in physics 

the Joule is used for energy while in chemistry and Calories measure energy in dietetics.  

2.3 Names and Notions 

The names of theorems can vary depending on the language, country, or CoP as we shall 

see in section 3. Similarly, the notion, i.e., vocabulary for the mathematical concepts, can 

vary. For instance, the notion permutation is used in French to denote the bijections from 

a finite set to itself whereas it also denotes the count of permutations without repetitions 

(n)r in English. In French, this count is called arrangements and is written Ak
n. Later we 

shall see that names of theorems can vary according to the cultural context as well.  

2.4 Educational Differences 

The educational practice of teaching mathematics exhibits large differences between 

cultures. The most obvious differences are caused by the curriculum standards which 

differ greatly from country to country or even from region to region. For instance, the 

notions of similarity and similar triangles occur in England at Key Stage 3 together with 

the notion of enlargement (and consequently with the intercepting lines theorem) whilst 

in France the intercepting lines theorem is taught without any reference to similarity of 

triangles which is taught about two years later in another mathematical context (see [3, 

sec 2.2].  

A pure translation of notions such as instant slope (English) or momentane Steigung 

(German) to the French pente de la tangente (slope of the tangent) is insufficient because 



the latter is based on geometric concepts which have other (learning) prerequisites than 

the prerequisites of instant slope. Hence, the context in which they are introduced differs.  

3 Case Study on Cultural Variability 

This case study about cultural variability in mathematics education has mainly been 

conducted in the European project ActiveMath-EU (in 2007-2008) that included Czech, 

Dutch, French, German, and Hungarian partners who contributed the results from their 

country and cultural point of view. This study was an exploratory study to observe how 

an average learning material would be translated from English and German to other 

languages with an eye on situations, in which a literal translation is inappropriate and 

needs cultural adaptation. There was no formal or very systematic procedure for the 

study. However, we are developing such a methodology currently which will also include 

the awareness for cultural variability.  

During the process of “translating” learning objects and courses we expected and 

observed the need for adaptations of educational material for mathematics which go far 

beyond the obvious variations such as 1,5 vs. 1.5. This problem has then been addressed 

in research and technological solutions of the ActiveMath-EU and InterGeo projects. The 

empirical results are a rich source for enculturation of mathematics education systems 

and therefore, we address them in much detail here rather than just mentioning one or two 

cases.  

In the ActiveMath-EU project cultural differences have not only been addressed for 

the general internationalization and the reuse of content on differentiation and its 

prerequisites (e.g., convergence of functions) but also for two other purposes, namely the 

bi-lingual teaching of mathematics (Hungarian and German in Budapest) and in a course 

for didactical comparisons (in Prague).  

Intercultural issues arose at all the levels we describe in section 2. In the following, 

we summarize a number of examples, and in section 4 we describe the technological 



solutions we have developed for enculturating ACTIVEMATH and, thus, solving issues 

from the case study.  

3.1 Symbolic Differences 

The differences of logical notations such as ∀ vs. ∧ and ∃ vs. ∨ are well known. In 

the studies we found quite a number of other symbolic differences, mostly depending on 

language.  

One of them is the notation for coordinates of a point (4.5, 3) which is (4,5;3) in 

Hungarian, and (4,5 3) in German. Moreover, Figures 1 and 2 show what semantically 

equal notations for the Least Common Multiple (German: kleinstes gemeinsames 

Vielfaches) and a Binomial Coefficient (German: Binomialkoeffizient) look like when 

rendered for different languages by ACTIVEMATH. 

 

Figure 1: Least Common Multiple in several languages 

 

Figure 2: Binomial Coefficient of two variables in different languages 



3.2 Notions 

Upper Bound. The notion of “upper bound” can be translated to German as “obere 

Schranke” and to French as “majorant”, whereas the “least upper bound” (German: 

“kleinste obere Schranke”) is “la borne supérieure” which is a literal translation of “upper 

bound” in French. In Czech, the word “majoranta” is used to denote the upper bound, but 

only for series. The upper bound for sequences is called “horni mess” and in this case, a 

human translator has to care about the context of the translation or the names have to be 

represented semantically and the actual presentation generated depending on the context 

reflected in the learning object’s metadata as described in section 4.4.2.  

Nullfolge. A sequence converging to zero, e.g., an= (1/n), is called “Nullfolge” in 

German. In English the notion for this is “null sequence”. In Czech, it has no equivalent 

as a standalone concept. The literal translation of “Nullfolge” to Czech is defined and 

used only for the constant sequence of zeros, an= (0) which is a specific null sequence, in 

Czech. Therefore, the Czech translation is not using the literal translation but the 

semantic equivalent, again a description of the property “a sequence converging to zero”.  

Convex, Strictly Convex. In Czech the notion “konvexní” and in German “konvex” is 

used for what is called weakly convex in English (sometimes also called just “convex” by 

some authors) and “ryze konvexní” (Czech) and “streng konvex” (German) for the 

English “convex” (sometimes also called “strictly convex” by some authors). Hence, the 

English version has always to refer semantically or syntactically to either “weakly 

convex”-“convex” or “convex”-“strictly convex” pairs. Cases like this illustrate 

differences between communities of practice rather then intercultural issues.  

Strictly Increasing, Increasing, Strictly Decreasing, Decreasing. In Czech, for “strictly 

increasing” order the notion “rostoucí” is used, i.e., the “strictly” is omitted. The notion 

in German is “streng monoton steigend”. The Czech notion for (non-strictly) “increasing” 

order is “neklesající” , i.e., literally “non-decreasing”. The German notion is “monoton 

steigend”. Similarly, in Czech for “strictly decreasing” order the notion “klesající” is used 



(literal English translation: decreasing). The notion in German is “streng monoton 

fallend”. The Czech notion for “decreasing” order is “nerostoucí” (literally: non-

increasing). The German notion is “monoton fallend”. So, the names have to be 

represented semantically and their presentations generated depending on the language.  

In France, the order relation is assumed to be strict, otherwise it is not called an order 

at all. That is, in French context only the definition and semantics of “strict order” is 

available and can be used. If somebody wants to use the non-strict semantics, it 

presupposes rewriting of content.  

Function. In the Hungarian tradition, a “function” includes the domain, the range and the 

rule for the mapping. The graph of the function is one of the representations of a function. 

This means, that a straight line or a parabola cannot be called a “function”, but just a 

“graph of the function”. This is handled more sloppily, e.g., in German.  

Slope. Some definitions and names of concepts differ in incompatible ways between 

language-based communities. For instance, the same concept is called instant slope in 

English and momentane Steigung in German but is described in geometric terms in 

French, as the pente de la tangente (slope of the tangent). Similarly, in French 

curriculum, the naming of an average slope – “pente de la sécant” (slope of a secant) – is 

due to its definition via secants.  

Depending on the context, the English term “slope” is translated into Czech by 

different words:  

• Přírûstek grafu funce (in the context of functions)  

• Stoupání (in the context of hills, roads etc.)  

• Směrnice přímky (in the mathematical context of lines – a slope of a straight line) 

In this case, one has to differentiate in which case the same concept has different 

names and in which case another concept is meant. A slope in the context of functions 

and hills (roads) describes the same concept, which is a generalization of the constant 

slope of a straight line.  



Notion in the mathematics education differ in German Bundesländer, e.g.:  

• Schaubild (in Baden-Würtemberg) vs. Funktionsgraph elsewhere  

• (monoton) wachsend (in several states) vs . (monoton) steigend elsewhere  

• Zentriwinkel (Thuringia) vs. Mittelpunktswinkel elsewhere  

• Perihel (Thuringia) vs. Umfangswinkel elsewhere  

• Basiswert for percentages (Nordrhein-Westphalen) vs. Grundwert elsewhere  

• Mitternachtsformel (some including Nordrhein-Westphalen) vs. Lösungsformel 

der quadratischen Gleichung elsewhere. 

3.3 Names of Theorems, Rules, etc. 

Some examples for culture-dependent names have been given above in section 2.3. In 

addition, the names of theorems can differ in different languages and cultures. For 

instance, the Inscribed Angle Theorem is called “Theorem of Thales” in English and 

“Satz des Thales” in German, while “Theoreme de Thales” means an enlargement 

theorem in French.  

As for region-related differences there are a number of examples for which schools in 

the German Federal States use different terminology, e.g., in Nordrhein-Westfalen the 

name “Mitternachtsformel” is used whereas in all other Federal States the same theorem 

is called “Lösungsformel für quadratische Gleichungen”.  

Quotient Rule, Chain Rule. As opposed to German and English, in Czech, those names 

alone are insufficient. An additional information that these rules concern derivatives has 

to be included: Pravidlo pro derivaci podílu, Pravidlo pro derivaci složené Funkce. This 

is due to the fact that in Czech other rules which are not about derivation have similar 

names.  

3.4 Curriculum Differences 

Cultural differences due to curricula specific to countries or regions imply different 

sequencings of learning objects and notions.  



Slope In French curricula, the average slope – “pente de la sécante” (literally: slope of a 

secant) – is introduced via secants, i.e., geometrically, rather than analytically. So, a 

common French course does not use an equivalent of the English definition of the 

“average slope” but other additional learning objects defining a secant. Consequently, 

when visualizing the concept in different cultures, different graphical representation 

might be used. In France, depicting the slope of a secant is used for illustrating the 

average slope, in Russia this is only used for application problems computing, e.g. an 

average velocity of a car.  

Angular Sum. The proof of the formula for sum of angles is based on and presupposes 

the trigonometric and exponential form of complex numbers in Germany. Because 

complex numbers are not included in the basic curriculum in Hungary and the 

trigonometric functions and vectors are taught earlier than the exponential function 

(because of needs of Physics), the Hungarian curriculum has the concept “vector” as a 

prerequisite for the proof of the formula for sum of angles and the theorem is proven 

using vectors.  

Educational Context of Country/Region. Depending on the country, more adaptation to 

the educational context may be needed. For instance, the calculus content of 

LEACTIVEMATH was considered appropriate for 11-13th grade at German gymnasium 

and Scottish first year university, but for Dutch secondary schools, the content was 

inappropriate because the educational context of Dutch secondary schools requires more 

interactivity and animation rather than just the formal mathematical concepts. This 

situation is similar to the “examples first” vs. “definitions first” sequencing strategies in 

different cultures. Similarly, the curricula of the different German Federal State differ. 

The different curricula can lead to different learning path because all prerequisites of a 

concept may have been taught to students in one state but not for students in another 

state. For instance, in year 8 of a common type of school (Realschule) the content to be 

taught in Baden-Würtenberg and Nordrhein-Westphalen is presented in the following 

table (in teaching sequence).  

Baden-Würtenberg  Nordrhein-Westphalen  



term rewriting term rewriting  

equations  data processing  

perimeter and area  rectangles and polygons 

linear functions  perimeter and area  

systems of linear equations percentage and interests 

 linear functions 

Moreover, at places the concepts taught for a specific topic vary depending on the 

state. For instance, for Gymnasium (secondary school) 8th grade in Rheinland-Pfalz 

students learn about probability calculus (among others) how to determine a probability 

through simulation, whereas in 8th grade Gymnasium in Nordrhein-Westphalen they 

learn to use Pascal’s Triangle.  

3.5 Tool Context 

Computer algebra systems (CASs) differ in their semantics too: these computation tools 

do not only use different input syntax and rendering for the same function but in some 

cases different CASs denote semantically incompatible functions with the same name. An 

example is the usage of the inverse function of the tangens tan, written arctan, for which 

the domain differs in different CASs (Maple and Derive) and thus the denoted functions 

are different, see [2].  

4 Adaptation Techniques in ACTIVEMATH 

In ACTIVEMATH a user registers with an indication of his/her language, country, and 

learning context. As depicted in Figure 4, during learning, the user can dynamically 

change these properties using the my-properties menu. The given values are then 

introduced into the rather static part of the student model. The purpose of this part of the 

student model is the actual cultural adaptation. We consider it “static” since its values are 

rarely changed for a student as opposed to values for competencies and overall mastery of 

topics in a “dynamic” part of the student model.  



According to the user’s choice of country, language, and learning context 

ACTIVEMATH adapts its presentation of learning material. This adaptation includes a 

number of dimensions and, therefore, is technologically realized by a number of 

techniques. In addition to the technologies, a fundament for the cultural adaptation is the 

knowledge representation of learning objects in ACTIVEMATH that relies on an 

educational extension of the semantic representation OMDOC [9].  

 

Figure 3: User profile as requested in the registration in ActiveMath 



4.1 Architecture 

This section provides an overview of ACTIVEMATH’s architecture and its modules as far 

as they are important for the cultural adaptation. 

 

Figure 4: Architecture of the ACTIVEMATH system. 

As described in more detail below, the following modules contribute to the 

enculturation of ACTIVEMATH. Their relationship is depicted in picture 4:  

• semantic knowledge representation and its delivery through the MBASE content 

storage; 

• the user interface; 

• the presentation system; 

• the course generator; 

• the search module; 

• the exercise system;  

• the input editor. 



4.2 Semantic Representation 

ACTIVEMATH’s knowledge representation of learning material is the semantic XML-

representation for mathematical documents, OMDOC, with educational extensions. 

OMDOC itself is an extension of the semantic representation of OpenMath [1], an XML-

representation of mathematical symbols (similar to MATHML-content).  

In order to automatically adapt the learning material to the student’s cultural context 

and to reuse the material, the structure of material is fine-grained and single learning 

objects are as small as possible and characterized (annotated) by culturally relevant 

metadata.  

4.2.1 Content Items 

The structure of material includes three levels:  

• At the finest level, content items are defined and authored. They are the smallest 

elements with a mathematical and pedagogical significance. For example, a 

definition is an item, an exercise, a complete example.  

• Content can be grouped in theories which form a coherent set of items that can be 

imported for further references. Content items are also grouped in books which 

provide a hierarchical organization of content items in chapters, sections, and 

page.  

• At the coarsest level, content projects are gathered in content collections which 

group OMDOC items and web-resources. These collections are the unit of storage 

management and reuse which the content storage MBASE loads and indexes: it 

parses the OMDoc XML files and serves individual items as well as links from 

and to them. 

4.2.2 Metadata Annotations 

Each item is annotated with metadata and some metadata can be inherited from the theory 

level. Metadata in OMDOC include: general administrative metadata; mathematical 



metadata defining types of mathematical items (“definition”, “theorem”, etc.) and their 

relationships. These provide a basis for a domain ontology needed for course generation. 

In addition, pedagogical metadata serve the needs of course generation adapted to user’s 

learning goals, personal preferences, and learning culture.  

A widely accepted metadata standard which is included in any of today’s educational 

metadata standards is Dublin Core.1 Dublin Core metadata is used in OMDOC. It 

represents country/region-dependent priorities through the coverage metadata. For 

instance, a definition that is used within the region of Flanders is annotated with 

<Coverage country="be" region="Flanders"/>. ACTIVEMATH uses the 

coverage metadata for its adaptive course generation, see section 4.6.  

Language and title are other metadata that are used for enculturation in ACTIVEMATH. 

The pedagogical metadata element learningcontext defines the education context, 

possible values of which can differ between countries.2 EU partners in the LeActiveMath 

and ActiveMath-EU projects agreed upon a restricted set of values which are to be 

appropriate for their countries.  

4.2.3 (Semantic) Textual Content 

OMDOC encodes several types of mathematics learning objects such as definitions, 

theorems, axioms, examples, etc. These items are related via relations and constitute a 

rich domain ontology. Other domain and pedagogical and cultural metadata is attached to 

these items (see above). In ACTIVEMATH the domain ontology is generated from the 

actual learning content and its metadata. The reason is that its educational content is 

fueled by a community of authors evolves over time. Of course, a community of authors 

(even with different cultural background) can agree upon and commit to a domain 

ontology before they start authoring content. This is, however, not the common situation 

for user-generated content on the Web.  

                                                 
1  http://dublincore.org 
2 The IEEE LOM standard had defined a set of values for this element which was later discarded, since 

there was no set of possible values approved that satisfies curricular wishes of all countries. 



An item consist of text, hyperlinks, formatting elements such as lists, tables, as well 

as images and last but not least, semantically represented mathematical formulæ (see 

below). An item also contains a title for each language and textual fragments for each 

target language.  

The multi-lingual nature of content items makes it possible  

• assemble language-adapted material depending on the student’s language; 

• to keep the content’s organization when a student switches languages, a feature 

that supports multi-lingual users. 

4.2.4 Representation of Mathematical Formulæ and Symbols 

The OPENMATH standard [1] defines an XML based encoding for mathematical objects 

based on elementary constructions such as binding and function application as well 

mathematical symbols whose semantics is described in content-dictionaries. OPENMATH 

defines an extensible set of symbols. The following is a definition of the binomial symbol 

(with two variables) that is located in the content-dictionary combinat1:  

 <OMOBJ>   

    <OMA>   

      <OMS cd="combinat1" name="binomial" />   

      <OMV name="a" />   

      <OMV name="b" />   

    </OMA>   

  </OMOBJ>  

Symbols are special items in OMDOC and OPENMATH. OMDOC theories can contain 

symbol elements which themselves are explained in standard OPENMATH-content-

dictionaries – the foundation of the OPENMATH standard. A symbol declaration is a 

semantic hook to which a symbol references points; it contains titles for each language 

and may be enriched with theorems and axioms within the same theory to indicate its 

properties.  



Composed mathematical objects (expressions) written in OPENMATH can ensure 

interoperability: they refer to the standard semantics of their OPENMATH symbols and, 

thus, can be understood by any tool or process using/understanding the OPENMATH 

standard. Such tools include: input-editors to enter mathematica expression, rendering 

tools, evaluation/diagnosis tools such as computer algebra systems (CASs) or plotters, 

which are interfaced with a converter from and to OPENMATH that are called 

phrasebooks.  

4.3 Internationalized Interface 

Internationalization of the overall ACTIVEMATH is realized through the classical approach 

of phrases dictionary whereby developers insert phrase-catchers in the user interface 

which are replaced by the text of the appropriate language when rendered.  

Currently, translating ACTIVEMATH requires the translation of about 1000 phrases of 

this dictionary, of the help collection, and of the mathematical formulæ rendering 

knowledge whose representation is explained below.  

4.4 The ACTIVEMATH Rendering Architecture 

The rendering process of ACTIVEMATH, which produces the browser material as 

delivered to the learner, converts the OPENMATH encoded formulæ to one of the 

presentation languages, HTML, MATHML, or TEX using a series XSLT files [7] which 

are fed by notations. This transformation is done in two stages [19] as illustrated in 5.  

• The first stage uses only the language-relevant knowledge and applies XSLT to 

produce fragments. This is the place, where symbol presentations and notations 

are included.  

• The second stage involves running the assembly of the content items into book 

pages and running other VELOCITY3 code in the presentation: the latter can 

                                                 
3 VELOCITY is framework that allows rendering parts of a Web page dynamically, similar to JSP. For 

instance, it can be used to insert the user’s name in a welcome page. 



employ all information relevant for cultural adaptation such as user profile or the 

domain of the material. This is the place where the actual rendering is finally 

adapted. 

 

Figure 5: The steps of the ACTIVEMATH rendering process 

4.4.1 Rendering Mathematical Notations 

Rendering mathematical formulæ on the web is, in itself, an art because of the changing 

and fragile rendering techniques offered by web-browsers. MATHML-aware browsers 

offer the best rendering option and this is supported by ACTIVEMATH. Additional 

rendering options in ACTIVEMATH include HTML+CSS and TEX. HTML+CSS remains 

the default because it is better supported by browsers and, more importantly, interactive 

features can be added to the rendering to support the reading of the formulæ.  

The rendering process of mathematical formulæ works mostly using XSLT 

stylesheets. For instance, for the notation for “binomial coefficient” (with variables a and 

b) as presented in Figure 2, a single representation can be rendered depending on the 

user’s language. The differences in notation that we have described in section 2 are 

realized by the rendering process based on the information of the symbol representation 

in Figure 6.  



<symbolpresentation id="combinat1binomial_59_54" for="binomial">   

  <notation precedence="1000" language="en">   

    <math>   

      <msubsup>   

        <mo>C</mo>   

        <mrow><mi am:precedence="0">b</mi></mrow>   

        <mrow><mi am:precedence="0">a</mi></mrow>   

       </msubsup>   

    </math>   

  </notation>   

  <notation precedence="1000" language="ru">   

    <math>   

      <msubsup>   

        <mo>C</mo>   

        <mrow><mi am:precedence="0">a</mi></mrow>   

        <mrow><mi am:precedence="0">b</mi></mrow>   

       </msubsup>   

    </math>   

  </notation>   

  <notation precedence="1000" language="default">   

    <math>   

          <mfenced>   

      <mfrac linethickness="0">   

        <mrow><mi am:precedence="0">a</mi></mrow>   

        <mrow><mi am:precedence="0">b</mi></mrow>   

         </mfrac>   

         </mfenced>   

    </math>   

  </notation>   

  <OMOBJ>   

    <OMA>   

      <OMS cd="combinat1" name="binomial" />   

      <OMV name="a" />   

      <OMV name="b" />   

    </OMA>   

  </OMOBJ>   

</symbolpresentation>  



Figure 6: Representation of the binomial symbol for its language-dependent rendering 

Essentially, the XSLT transformation matches the OPENMATH term and replaces it by 

the associated culture-dependent rendering and replaces variables by the rendering of 

their corresponding OPENMATH terms. All these features are collected and converted to 

an XSLT-template per symbol prototype. The template contains a condition on the 

language to output the right rendering for the given language. Then the template is 

converted to an XPATH expression.  

Adaptation to further dimensions of variability is not dealt with XSLT but is coped 

with the notation declarations described above. Notable adaptation dimensions are a 

“book” collection and educational context. A specific notation may be rendered because 

it has a matching prototype and the material presented to the student belongs to the 

content collection for a specific “book” or the student has a specific educational context.  

The XSLT stylesheet does not know of educational context or book-collection and 

thus outputs all possible cases, with a case split execution at the VELOCITY interpretation 

stage. The resulting enlargement of the presentation fragments, potentially exponential in 

terms of the formula depth is not significant, especially since the VELOCITY engine 

extremely efficient.  

4.4.2 Enculturating Symbols and Names 

In order to produce a knowledge representation of symbols as the one above, a symbol 

editor has been developed for ACTIVEMATH [13]. This authoring tool produces the 

notations (renderings) which are made of an OPENMATH prototype, the mathematical 

expression to be matched, and its associated rendering. The rendering itself is expressed 

in MATHML-presentation encoding.  

The same rendering techniques can be used not only for modifying the presentation of 

symbols but also that of notions/names. Similar to symbols, the rendering facility fetches 

the title of the notion/name and places it during the preprocessing before the XSLT 

application.  



 

Figure 7: Customizing formula editor palettes for different languages 

Apart from a culture-adapted presentation of mathematical notations ACTIVEMATH has 

culture-adapted formula input methods. Students as well as authors can use a palette-

based input editor for mathematical expressions in ACTIVEMATH. At the moment, 

ACTIVEMATH’s formula editor supports multiple notations for different countries. This 

support is static, i.e., there are static palettes for each country (see Figure 7).  

4.6 Course Generator 

Often, the culturally induced differences manifest in how learning objects are selected 

and sequenced. In particular, depending on the country or region, the curricula differ and 

the same mathematical concepts are described by relying on different definitions. 

Section 2.4 contrasted the example of instant slope in an English (and momentane 

Steigung in a German) curriculum with pente de la tangente in a French learning path. 

The French, geometry-based definition needs to be trained by examples different from 

those in the English and German counterparts.  

These differences can be generated with ACTIVEMATH’s course generator PAIGOS 

[20]. PAIGOS dynamically assembles the content items to courses, taking information 

about the learner into account, e.g., his language, country/region, learning context as well 

as his competencies and preferences. The assembly, called course generation, is 

performed according to formalized pedagogical knowledge. This knowledge encodes 

e.g., which definition, examples and exercises to present, in which order, and how the 



course is structured in sections and subsection. In total, PAIGOS’s pedagogical knowledge 

encompasses about 360 “rules”.  

In previous work [20] we have shown that PAIGOS can implement various 

pedagogical strategies, such as those based on moderate constructivism as well as 

instructional design. PAIGOS’s pedagogical knowledge is independent of the specific 

mathematical objects – however it uses information represented in the mathematical 

domain ontology. For instance, it uses the information represented in OMDOC about 

prerequisites of definitions, and does general pedagogical reasoning about the 

prerequisites (such as which ones to present). Thus, course generation in ACTIVEMATH 

takes information into account represented in the mathematical domain ontology and in a 

pedagogical ontology, but keeps these two ontologies separated. This makes reuse of 

pedagogical knowledge possible, such as applying the rules to not yet encoded 

mathematical areas. Neither of these ontologies is sufficient on its own for pedagogically-

based reasoning: without information about mathematical concepts PAIGOS would not 

know which one to present; without pedagogical information only very limited courses 

could be generated.  

Automatic course generation also takes country/regional differences into account. 

They affect the selection of appropriate examples, exercises and texts, but also the 

sequencing according to the prerequisite relationship. In the above example, a course 

generated for a French student presents the geometrical concept tangente first, followed 

by the notion of pente de la tangente. A course constructed according to the German way 

of sequencing the content shows the definition of (the graph of) a function first, and then 

the momentane Steigung. Thus, the courses generated for a French and a German student 

differ with respect to the presented definitions and prerequisites.  

In order to explain how PAIGOS implements this cultural adaption, first we need to 

describe how learning objects are selected and assembled to a personalized course. 

During course generation, PAIGOS performs reasoning about learning objects. The 

underlying pedagogical and cultural knowledge is formulated with a vocabulary that is 

represented as an ontology of instructional objects (OIO) whose classes express different 



pedagogical purposes that learning objects can have [20]. For instance, during course 

generation PAIGOS might decide that at a particular place in the course (e. g., at instant 

slope) an exercise f or a concept should be inserted. This translates to a query for a 

learning object, which basically consist of a metadata constraint. In this example, the 

corresponding constraint (for a university student) is  
(class exercise) (for instant_slope) (hasLearningContext university) 

which contains the metadata LearningContext and for. PAIGOS sends these queries to the 

content storage, MBASE, collects the identifiers of those learning object that fulfill the 

constraint and return the resulting list to PAIGOS.  

In order to realize the culturally implied differences in selection and sequencing, 

PAIGOS includes the location information of the student in the metadata constraint when 

collecting the prerequisites of a definition.  

(:- (collectUnknownPrereq ?c ?result)   

    ((learnerProperty hasEducationalLevel ?el)   

     (learnerProperty hasLocale ?loc)   

     (assign ?resources (call GetRelated (?c) -1   

                             (((class Fundamental)   

                              (relation isRequiredBy ?c)   

                              (property hasLearningContext ?el)   

                              (relation hasCoverage ?loc)))))   

     (not (same ?resources nil))   

     (assign ?sorted (call Sort ?resources   

                            (((class Fundamental)   

                              (relation isRequiredBy ?c)   

                              (property hasLearningContext ?el))))))   

     (removeKnownFundamentals ?reversedUnknown ?sorted)   

     (assign ?result (call Reverse ?reversedUnknown)))) 

Figure 8:  Inserting all unknown prerequisites 

Figure 8 shows the formalized knowledge used to retrieve the prerequisites. Here, we 

focus on using information about the coverage of a learning object. In a first step, all 

fundamentals (the term in the OIO used to subsume definitions and theorems) that are 



required by the fundamental bound to ?c (the question mark denotes variables) and 

whose learning context corresponds to the educational level of the learner are collected 

using the function GetRelated (lines 4–8) of Figure 8. This function retrieves all learning 

objects that are related via the given relation and that fulfill the given constraints. Here, 

one constraint includes the coverage of the learning objects. The coverage needs to 

correspond to the language and country preferences of the user (encoded in the value 

hasLocale). In case definitions or theorems were found that fulfill the conditions 

(line 9), they are sorted with respect to the prerequisite relationship requires 

(lines 10–13). Finally, those fundamentals that are known to the learner are removed 

using the axiom removeKnownFundamentals and the result is bound to the 

variable ?result.  

In ACTIVEMATH, each concept can have several definitions that differ in their 

Coverage metadata. If the Coverage metadata is not specified, the default ALL-countries 

is used. Upon a query, MBASE searches for the definition (more generally: learning 

object) whose Coverage corresponds to the user’s country/region. If it exists, its identifier 

is returned. Otherwise, the identifier of a definition without coverage metadata is 

returned. If there is none, an empty list is returned. These search results are used by 

PAIGOS which inserts the definition in the course that is appropriate from the Coverage 

perspective whenever possible.  

The here-described way of selecting prerequisites is one way of taking into account 

some of the cultural educational differences described in Section 2.4. A more advanced 

means is to modify the pedagogical knowledge itself, for instance to provide examples 

before introducing formal examples vs. first introducing the formal parts and only then 

the examples. The knowledge employed by PAIGOS is represented declaratively and thus 

is adaptable, but this currently requires help by an expert. Thus, until now, ACTIVEMATH 

ships with one large set of “rules”, but for future versions a configuration tool is 

conceivable that allows a flexible selection of the knowledge used by PAIGOS.  



4.7 Enculturated Search 

ACTIVEMATH includes a search tool as many other systems do. Our experiences show 

that this search has to be enculturated too: not only the mathematical names and notions 

can differ between countries/languages but also curriculum standards may differ in their 

vocabulary used to describe mathematical concepts or competencies as indicated in [10] 

and [12]. For instance, where the French curriculum mentions concrete theorems about 

proportions, the English curriculum mentions only the recognition of a transformation.  

In the INTERGEO project, these differences have been tamed so as to allow cross-

curriculum search and annotation. The annotation user-interface remains in the language 

chosen by the annotator which, however, annotate topics, competencies, and educational 

levels which are part of an ontology; they are chosen following an auto-completion 

paradigm. For the search, the nodes of the ontology are used to expand basic text queries 

to queries for the corresponding ontology nodes and for nodes related to these. This 

offers the chance to find a related resource in a language that is different from the one of 

the original query language and resource.  

The input of competencies and topics, in each users’ language, is possible in two 

ways:  

1. by pointing to the intended passage in the curriculum text of current use. Clicking 

on the intended line within a visually equivalent document is one possibility to 

input the (linked) topics and competencies  

2. by searching for the competencies or topics typing a few words and choosing 

among an (auto-complete-like) list of suggestions. 

Both input methods allow the user to “speak the ontology language”. Most competence-

topic nodes are presented by their titles and types. They are linked to a more elaborate 

web-page describing their attributes which is fundamental to verify the choices made.  



4.8 Input Diagnosis 

ACTIVEMATH’ default choice of units in exercises corresponds to the student’s 

country/language and on the exercise’s field.  

Moreover, the exercise system diagnoses students’ input of mathematical expressions. 

In many cases, it determines whether the input is semantically (or numerically) 

equivalent to a given correct solution. Since the use of units/measures is culturally 

determined, the diagnosis has to convert units and their dependencies such as 1 meter = 

100 centimeter.  

For the diagnosis, units are handled as OPENMATH symbols and they can have 

definitions such as 1 inch = 2.53 cm and 1 meter = 100 centimeter. The exercise system 

queries a domain reasoner developed for units that finds out whether the student input is 

equivalent to the expected solution.  

The numeric conversion between families of units is not difficult, e.g., meter to inch, 

feet, mile. However, the most appropriate has to be chosen (for which the resulting 

figures are most similar to the original pedagogical intention) and this is not (only) a 

question of numeric conversion. In such problematic cases the educational material has to 

be manually adapted.  

The reason for this is pedagogical, and the selection of concrete numeric values in the 

problem statement of the exercise is not only bound to the proportions of the units in a 

unit system but also to the learning context and goal (e.g., learning to compute with 

integers or with real numbers). For instance, a problem statement of an exercise training 

proportions can be designed with imperial measures and based on the fact that 1 Yard 

consists of 3 Feet. In this context, it does not make much sense to numerically convert 

such a problem statement into the metric system using meters and centimeters.  



5 Related Work 

A recent attempt to make the content of the Assistment system for mathematics aware of 

culturally determined units and names is described in [21]. It describes how conditional 

variables are used for certain symbols and names. This equals a simple approach in QTI 

(Question & Test Interoperability) which is a standardized data format for online learning 

materials, mostly for quizzes and multiple choice exercises.4 For instance, the variable 

“sports” can have the instances “baseball” (US), “Cricket” (India), soccer” (EU). The 

technique for these modifications of the Assistment system’s content uses an introduction 

of variables into exercises. For instance, additional variables are introduced for names, 

e.g., American idol names. The variables” instantiations then depend on rules for values, 

e.g., sport depends on country (if US then Baseball) or currency depends on country (if 

US then Dollar). As compared with our approach this simple variable instantiation is 

restricted to (symbol) names and used depending on the student’s country only. It yields a 

syntactic replacement which does not preserve the semantics of symbols as it is important 

for ACTIVEMATH.  

Hofstede [6] defines culture as a dimensional concept and links differences in 

education to a culture’s position on the dimensions. His dimensions include: (1) Power 

Distant Index (PDI - members accept and expect power to be distributed more or less 

unequally); (2) Individualism (IDV - degree to which individuals are integrated into 

groups); (3) Masculinity vs. femininity (MAS - distribution of roles between genders); 

(4) Uncertainty Avoidance Index (UAI - degree of tolerance for uncertainty and 

ambiguity); (5) Long-Term Orientation vs. short-term orientation (LTO - degrees of 

perseverance vs. tradition, social obligations, protecting one’s face).  

This theory can back hypotheses for some of the cultural variability discussed above, 

e.g., a low degree of PDI could be associated with teaching as a participatory process and 

require a discovery/exploration scenario in course generation while a high degree of PDI 

biases teaching towards a teacher-led more guided scenario. The MAS dimension may 

                                                 
4 http://www.imsproject.org/question/ 



not play such a big role because ACTIVEMATH adapts to the individual student anyway; a 

low UAI index may tend to a discovery scenario but only marginally because it seems 

that in most countries mathematics is taught without much ambiguity or uncertainty. A 

new direction that we are investigating is the inclusion of erroneous examples into 

learning material, for which students have to find errors and correct them [14]. Whether 

the effect of such learning objects depends on the student’s culture is still unknown. LTO 

may require adapting tutorial dialogues and feedback to provide affective scaffolding 

with more/less autonomy and approval – two most relevant aspects that impact face [17]. 

This would yield a micro-adaptation (inside the exercises) which we did not address in 

this paper.  

Hall’s theory of encoding and decoding [5] focuses on negotiation of meaning which 

has also been a recent focus in math education research, where it is investigated from a 

cognitive rather than from a cultural point of view. Conclusions for computer-based 

learning include the usage of specific (e.g., visual) representations. In addition to the 

representations which support developmental change, we hypothesize that the provision 

of culturally adequate experiences – examples and counter-examples – will support the 

mental processes of assimilation and accommodation (see [16]) and, thus, influence the 

efficiency of a negotiation of meaning.5 

The research on CoPs, e.g., in [22, 8] is interesting and tries to explain cultural 

variability based on groups of practice. It did not produce any technological solutions 

itself (as we did) and we think our empirical study contributed to better support the CoP 

ideas for mathematics learning.  

6 Conclusions 

Users/learners can adapt to almost everything but this adaptation consumes some of their 

cognitive resources which then cannot be activated for the actual learning process. Hence, 
                                                 
5 Assimilation is the process by which new experiences are incorporated into existing mental structures. 

Accommodation is the process by which existing mental structures are modified to adapt to new 

experiences according to Jean Piaget. 



culture-dependent adaptations can free students” cognitive resources for learning, i.e., for 

cognitive processes relevant for learning such as remembering and accommodation of old 

knowledge with new experience.  

In our work, we took an empirical rather than a theoretical starting point. One obvious 

reason was that mathematics education did not get much attention in theoretical cultural 

studies previously. In this paper we therefore discussed a number of adaptation 

dimensions which are necessary in educational material for mathematics, which were 

observed in a case study and that are also presented.  

We described how ACTIVEMATH performs many of these adaptations automatically. 

In particular, we show how the presentation and authoring of symbols, the presentation of 

units, names and notions are culturally adapted, and how the selection and sequencing of 

learning objects is enculturated. The technological basis for this has been implemented. 

More empirical work will be done in order to discover more instances for which 

enculturation is necessary. In a new project, we will also develop a systematic process for 

this discovery and provision, e.g., with additional gap detection and special focus on 

cultural variability.  

Future Work ACTIVEMATH already has a mechanism of customizing notations. Only 

with respect to rendering of mathematical formulæ this task is fully achieved but the 

culture-dependent input syntax for mathematical formulæ through an input editor is not 

yet fully customizable – it is fixed per country. Such an input editor is needed for the 

input of mathematical expressions in a search tool or when solving an exercise,  
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